基于ClickHouse的实时数据仓库的基础架构研究  被引量:1

Research on the infrastructure of real-time data warehouse based on ClickHouse

在线阅读下载全文

作  者:蒋雷 白伟丽 李小红 Jiang Lei;Bai Weili;Li Xiaohong(School of Big Data and Computer Science,Guangdong Baiyun University,Guangzhou 510450,China)

机构地区:[1]广东白云学院大数据与计算机学院,广州510450

出  处:《现代计算机》2024年第11期91-95,共5页Modern Computer

基  金:广东省教育厅质量工程项目(CXQX-JY202101)。

摘  要:随着移动互联网技术的进步,用户对网购参与程度的提高,电商企业每天、甚至每小时都在收获大量用户行为日志和业务数据,传统实时计算系统已无法满足对这些日志和业务数据进行在线分析和实时性统计。在该项需求的启发下,基于分层设计理念对用户行为数据实时处理的基础型架构进行研究,以期在面对大量实时计算时,通过沉淀中间结果的方式提高计算复用性,降低开发成本。该架构采用实时分析型列式数据库ClickHouse和Flink实时流式处理框架作为核心技术,通过实时计算获得天级、分钟级、秒级甚至亚秒级数据,便于企业对业务进行快速反应和调整,满足新时代下的实时计算需求。With the advancement of mobile internet technology and the increasing participation of users in online shopping,e-commerce enterprises are harvesting a large amount of user behavior logs and business data every day,even every hour.Traditional real-time computing systems are no longer able to meet the online analysis and real-time statistics of these logs and business data.Inspired by this requirement,a basic architecture for real-time processing of user behavior data is studied based on the lay-ered design concept,aiming to improve computational reusability and reduce development costs by precipitating intermediate re-sults when facing a large amount of real-time computing.This architecture adopts the real-time analytical columnar database Click-House and Flink real-time streaming processing framework as the core technologies,and obtains data at the day,minute,second,and even sub second levels through real-time computing,making it easy for enterprises to quickly respond and adjust to business,and meeting the real-time computing needs of the new era.

关 键 词:ClickHouse 实时计算架构 Flink 大数据 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象