Multiple types of disease-associated RNAs identification for disease prognosis and therapy using heterogeneous graph learning  

在线阅读下载全文

作  者:Wenxiang ZHANG Hang WEI Wenjing ZHANG Hao WU Bin LIU 

机构地区:[1]School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China [2]School of Computer Science and Technology,Xidian University,Xi'an 710071,China [3]Department of Teaching and Research,Shenzhen University General Hospital,Shenzhen 518055,China [4]Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound,School of Biomedical Engineering,Shenzhen University Medical School,Shenzhen 518055,China [5]Advanced Research Institute of Multidisciplinary Science,Beijing Institute of Technology,Beijing 100081,China

出  处:《Science China(Information Sciences)》2024年第8期337-338,共2页中国科学(信息科学)(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.62325202,62372041,U22A2039).

摘  要:Identifying disease-associated RNAs is crucial in revealing the pathogenic mechanisms of diseases[1],and biologists have made notable progress in this field[2].However,more effective computational methods are needed to provide reference disease-associated RNAs,reducing the manpower and material resources required for biological experiments.With the powerful ability of graph neural networks in detecting association patterns[3],several graph-learning-based methods are proposed to identify disease-associated RNAs.For example,HGC-GAN integrated the strengths of heterogeneous graph convolutional neural network and generative adversarial network to predict candidate disease-associated lncRNAs[4].

关 键 词:CONVOLUTION NEURAL network 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] Q811.4[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象