检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄威 程一帆 马海波 Wei Huang;Yifan Cheng;Haibo Ma(School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210023,China;Qingdao Institute of Theoretical and Computational Science,School of Chemistry and Chemical Engineering,Shandong University,Qingdao 266237,China)
机构地区:[1]南京大学化学化工学院,南京210023 [2]山东大学化学与化工学院,青岛理论与计算科学研究院,青岛266237
出 处:《科学通报》2024年第21期3076-3087,共12页Chinese Science Bulletin
基 金:国家杰出青年科学基金(22325302)资助。
摘 要:在多电子系统中,电子间的多体相互作用引发的强关联效应不仅是量子纠缠和量子相干等新奇量子特性的关键来源,同时也是理论化学和计算物理领域所面临的核心挑战之一.为克服这一挑战,量子化学家通常将强关联效应分为静态关联和动态关联,并发展了一系列严格的波函数理论方法来处理这些效应.对于因前线轨道近简并而产生的静态关联,研究者发展了选择性组态相互作用(sCI)、密度矩阵重正化群(DMRG)、完全组态相互作用量子蒙特卡罗(FCIQMC)、神经网络量子态(NQS)等先进的多组态方法.这些方法通过显式或隐式地提取和压缩组态空间信息,成功地扩大了可计算活性空间的规模.将这些多组态方法与多参考组态相互作用(MRCI)、多参考微扰理论(MRPT)、多参考耦合簇理论(MRCC)等传统多参考方法结合使用,可以进一步捕捉到活性空间外电子间瞬时相互作用产生的动态关联,从而实现对中小强关联分子体系(~50个活性轨道)的超高精度定量描述.本文综述了过去十年中关于强关联分子体系电子结构的波函数理论方法的研究进展,总结了各种方法的优势和局限性,并对它们未来的发展趋势进行了探讨.In recent years,numerous novel materials have emerged in fields such as high-temperature superconductivity and quantum communication,including unconventional superconductors,topological insulators,and spin liquids.These materials exhibit significant quantum phenomena such as quantum interference,tunneling,fluctuations,and entanglement,often arising from strong correlation effects among electrons within molecules.In the community of quantum chemistry,strong correlation effects are typically classified into dynamic electron correlation and static electron correlation.Dynamic electron correlation,caused by the instantaneous movement of electrons leading to charge density fluctuations,presents computational challenges due to the necessity of introducing a multi-particle form of the wave function.This departure from the mean-field single-particle perspective results in a substantial increase in the computational cost for calculating electron correlation levels.On the other hand,static electron correlation arises from the near-degeneracy of numerous frontier molecular orbitals,resulting in a quantum superposition of electron configurations.It requires the use of multi-configuration methods and faces the well-known“exponential wall”challenge,where computational complexity exponentially grows with the system size.Therefore,due to the involvement of both dynamic and static electron correlations in strongly correlated systems,achieving precise electronic structure calculations is exceptionally difficult,representing a significant challenge in theoretical chemistry and computational physics.Traditionally,to describe the static correlation,quantum chemists often define crucial correlated orbitals and their electrons within the complete active space(CAS).Full configuration interaction(FCI)calculations are performed within the CAS,while the region outside the CAS is described by mean-field methods.While these multi-configuration methods allow for arbitrary electron arrangement within the CAS,effectively capturing the stati
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.13.48