检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics,North Carolina State University,Raleigh,NC 27695,USA [2]SMS-HCIC-School of Mathematics and Physics,Center for Applied Mathematics of Guangxi,Guangxi Minzu University,Nanning 530006,China
出 处:《Science China Mathematics》2024年第8期1911-1932,共22页中国科学(数学)(英文版)
基 金:supported by U.S.National Science Foundations(Grant Nos.2212461 and 1813340);supported by National Natural Science Foundation of China(Grant Nos.12261010 and 11801101)。
摘 要:We consider the problem of complex root classification,i.e.,finding the conditions on the coefficients of a univariate polynomial for all possible multiplicity structures on its complex roots.It is well known that such conditions can be written as conjunctions of several polynomial equalities and one inequality in the coefficients.Those polynomials in the coefficients are called discriminants for multiplicities.It is also known that discriminants can be obtained using repeated parametric greatest common divisors.The resulting discriminants are usually nested determinants,i.e.,determinants of matrices whose entries are determinants,and so on.In this paper,we give a new type of discriminant that is not based on repeated greatest common divisors.The new discriminants are simpler in the sense that they are non-nested determinants and have smaller maximum degrees.
关 键 词:parametric polynomial complex roots DISCRIMINANT MULTIPLICITY RESULTANT
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7