机构地区:[1]School of Physics,Beihang University,Beijing 100191,China [2]Sino-French Institute of Nuclear Engineering and Technology,Sun Yat-Sen University,Zhuhai 519082,China [3]Instituto de Física,Universidade Federal Fluminense,24210-340,Niterói,Rio de Janeiro,Brazil [4]Institute for Advanced Study in Nuclear Energy&Safety,Shenzhen University,Shenzhen 518060,China [5]Shenzhen Key Laboratory of Research and Manufacture of High Purity Germanium Materials and Fetectors,Shenzhen University,Shenzhen 518060,China [6]INFN,Sezione di Padova,Padova,Italy [7]Dipartimento di fisica Astronomia dell'Universita di padova,Padova,Italy [8]State Key Laboratory of Radiation Medicine and Protection,School of Radiation Medicine and Protection,Soochow University,Suzhou 215123,China [9]China Institute of Atomic Energy,Beijing 102413,China [10]The Key Laboratory of Beam Technology and Material Modification of Ministry of Education,College of Nuclear Science and Technology,Beijing Normal University,Beijing 100875,China [11]INFN,Laboratori Nazionali di Legnaro,I-35020 Legnaro,Italy [12]INFN,Sezione di Napoli,I-80126 Napoli,Italy [13]Dipartimento di Farmacia,Universitàdi Napoli"Federico II",I-80131 Napoli,Italy [14]Department of Natural and Mathematical Sciences,Faculty of Engineering,Tarsus University,33480 Mersin,Turkiye [15]Physics Division,Argonne National Laboratory,Lemont-IL,USA [16]Departamento de Matemaética,Física e Computaç˜ao Universidade do Estado do Rio de Janeiro,Faculdade de Tecnologia,27537-000,Resende,Rio de Janeiro,Brazil [17]Department of Physics,Sivas Cumhuriyet University,Sivas,Turkey [18]Instituto de Física,Universidade Federal do Rio de Janeiro,CP 68528,21941-972,Rio de Janeiro,Brazil
出 处:《Chinese Physics C》2024年第7期106-117,共12页中国物理C(英文版)
基 金:Supported by the National Nature Science Foundation of China(U2167204,11975040,1832130);The Brazilian authors thank the partial financial support from CNPq,FAPERJ,and INCT-FNA(Instituto Nacional de Ciência e Tecnologia,Física Nuclear e Aplicações),research Project No.(464898/2014-5);supported by(M.S.)the U.S.Department of Energy,Office of Science,and Office of Nuclear Physics(DE-AC02-06CH11357);supported By the Key Research and Development Program of Guangdong Province,China(2020B040420005);the Basic and Applied Basic Research Foundation of Guangdong Province,China(2021B1515120027);LingChuang Research Project of China National Nuclear Corporation(20221024000072F6-0002-7);the Nuclear Energy Development and Research Project(HNKF202224(28)),and the'111'Center(B20065).
摘 要:The complete and incomplete fusion cross sections for ^(6)Li+^(209)Bi were measured using the in-beamγ-ray method around the Coulomb barrier.The cross sections of(deuteron captured)incomplete fusion(ICF)products were re-quantified experimentally for this reaction system.The results reveal that the ICF cross section is equivalent to that of complete fusion(CF)above the Coulomb barrier and dominant near or below the Coulomb barrier.A theoretical calculation based on the continuum discretized coupled channel(CDCC)method was performed for the aforementioned CF and ICF cross sections;the result is consistent with the experiments.The universal fusion function(UFF)was also compared with the measured CF cross section for different barrier parameters,demonstrating that the CF suppression factor is significantly influenced by the choice of potential,which can reflect both dynamic and static effects of breakup on the fusion process.
关 键 词:cross section incomplete fusion suppression factor weakly bound nuclei
分 类 号:O572.212[理学—粒子物理与原子核物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...