考虑用户出行差异与充电决策偏好的电动汽车充电站规划  

Planning of electric vehicle charging stations considering user travel differences and charging decision preferences

在线阅读下载全文

作  者:朱永胜[1] 叶青 李燕斌[1] 赵强松[1] 陈乙瑞 ZHU Yongsheng;YE Qing;LI Yanbin;ZHAO Qiangsong;CHEN Yirui(School of Electronic and Information,Zhongyuan University of Technology,Zhengzhou 450007,China)

机构地区:[1]中原工学院电子信息学院,河南郑州450007

出  处:《中原工学院学报》2024年第3期1-10,共10页Journal of Zhongyuan University of Technology

基  金:国家自然科学基金面上项目(61873292);河南省高等学校重点科研项目计划基础研究专项(22ZX011)。

摘  要:大规模电动汽车的出行一般具有规律性,但其充电负荷的分布受到用户出行主观意愿的影响。首先考虑到用户在日常活动中存在的出行差异,针对不同性质车辆建立出行需求响应模型;依据用户出行中的决策偏好,确定不同状态下电动汽车的充电路径选择策略;其次,基于各候选站单位时间的最大并行服务量及优化约束对充电站进行容量配置,以用户经济损失与充电站建设运营年均综合成本最低为目标建立充电设施规划模型;最后,采用改进的粒子群算法求解模型,通过具体案例分析验证了所提规划方法的合理性与有效性。The travel patterns of large-scale electric vehicles are generally regular,but the distribution of their charging loads is affected by user subjective travel preferences.Firstly,considering the travel differences that exist in users’daily activities,a travel demand response model is established for vehicles of different types;based on the decision-making preferences of users during travel,the charging path selection strategy for electric vehicles in different states is determined.Secondly,the capacity configuration of charging stations is based on the maximum amount of parallel service per unit of time and the optimization constraints of the candidate stations,and a charging facility planning model is established with the goal of minimizing the user’s economic loss and the construction and operational annual average of the charging station.Finally,the improved particle swarm algorithm is used to solve the model,and the reasonableness and effectiveness of the proposed planning method are validated through specific case studies.

关 键 词:电动汽车 充电站 出行差异 决策偏好 出行需求响应 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象