检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:强碧瑶 史恺宁 任军学[1,2,3] 史耀耀[1,2,3] Biyao QIANG;Kaining SHI;Junxue REN;Yaoyao SHI(School of Mechanical Engineering,Northwestern Polytechnical University,Xi’an 710072,China;Key Laboratory of High Performance Manufacturing for Aero Engine,Ministry of Industry and Information Technology,Northwestern Polytechnical University,Xi’an 710072,China;Engineering Research Center of Advanced Manufacturing Technology for Aero Engine,Ministry of Education,Northwestern Polytechnical University,Xi’an 710072,China)
机构地区:[1]西北工业大学机电学院,西安710072 [2]西北工业大学航空发动机高性能制造工信部重点实验室,西安710072 [3]西北工业大学航空发动机先进制造技术教育部工程研究中心,西安710072
出 处:《航空学报》2024年第13期197-209,共13页Acta Aeronautica et Astronautica Sinica
基 金:国家自然科学基金(51905442);国家科技重大专项(J2019-VII-0001-0141)。
摘 要:精确可靠的刀具剩余寿命预测可以减少加工过程中刀具过度使用和未充分使用的比率,从而最大限度地提高加工可靠性并降低生产成本。传统机器学习方法在预测刀具剩余寿命时依赖于训练数据和测试数据遵循相同分布的假设,以及广泛的离线测量数据。然而在实际加工过程中,由于加工条件的变化和有限的刀具磨损数据,致使传统方法在跨工况预测刀具剩余寿命时精度较差。针对该问题,提出一种基于实例迁移学习的刀具剩余寿命预测方法,以达到准确预测跨工况条件下刀具剩余寿命的目的。首先,利用迁移学习算法动态调整多个源域中所有实例的权重,充分利用与目标数据高度相关的源域信息来改善模型的泛化能力,从而利用少量目标域数据预测目标工况下的刀具剩余寿命。其次,为了提升迁移学习算法的时间序列预测能力,开发了递归高斯过程回归模型作为基学习器,通过延迟反馈对相邻时刻的刀具剩余寿命进行约束,与此同时还减少了特征准备工作并降低了模型复杂度。结果表明,该方法可以有效提升跨工况下刀具剩余寿命的预测精度,预测效果也证实了方法的稳定性和可靠性。Accurate and reliable predictions of tool remaining useful life could reduce the rate of over-utilization and under-utilization of tools during machining,thereby maximizing the machining reliability and reducing production costs.Traditional machine learning methods for tool remaining useful life prediction rely heavily on the assumption that training and test data follow the same distribution,as well as extensive offline measurement data.However,in actual machining process,prediction accuracy of the traditional methods is reduced due to the variation in machining conditions and limited tool wear data.To address this problem,an Instance-based Transfer Learning framework is proposed to accurately predict the tool remaining useful life cross different working conditions.Firstly,a transfer learning algorithm is used to dynamically adjust the weights of all instances in multiple source domains,which aims to make full use of the source domain information that is highly correlated with the target data.Thus,the generalization ability of the model is improved,and the remaining tool life of the target working conditions could be well predicted with only a small amount of target domain data.Secondly,recurrent Gaussian process regression model is further developed as the base learner to improve the time series prediction capability of the transfer learning algorithm.The model limits the tool remaining useful life at adjacent moments through delayed feedback,while reducing the feature preparation time and the model complexity are reduced.The results indicate that the proposed framework can effectively improve the prediction accuracy of the tool remaining useful life cross different working conditions,and the prediction effectiveness also confirms the stability and reliability of the framework.
关 键 词:跨工况 实例迁移学习 递归高斯过程回归 时间序列预测 刀具剩余寿命
分 类 号:V262.35[航空宇航科学与技术—航空宇航制造工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145