检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖霄 柏正尧[1] 李泽锴 刘旭珩 杜佳锦 XIAO Xiao;BAI Zhengyao;LI Zekai;LIU Xuheng;DU Jiajin(School of Information Science and Engineering,Yunnan University,Kunming 650500,China)
机构地区:[1]云南大学信息学院,昆明650500
出 处:《计算机科学》2024年第8期183-191,共9页Computer Science
基 金:云南省重大科技专项计划(202002AD080001)。
摘 要:目前,基于深度学习的点云上采样方法缺失对局部区域特征关联性的关注和对全局特征的多尺度提取,导致输出的密集点云存在异常值过多、细粒度不高等问题。为解决上述问题,提出了嵌入注意力机制的并行多尺度点云上采样网络(Parallel Multi-scale with Attention mechanism for Point cloud Upsampling),网络由特征提取器、特征拓展器、坐标细化器和坐标重建器4个模块级联组成。首先给定一个N×3的稀疏点云作为输入,为了获得点云的全局和局部特征信息,设计了一个嵌入注意力机制的并行多尺度特征提取模块(PMA)用于将三维空间的点云映射到高维特征空间。其次使用边缘卷积特征拓展器拓展点云特征维度,得到高维点云特征,以更好地保留点云特征的边缘信息,将高维点云特征通过坐标重建器转换回三维空间中。最后使用坐标细化器精细调整输出点云细节。在合成数据集PU1K上的对比实验结果表明,PMA-PU生成的密集点云在倒角距离(CD)、豪斯多夫距离(HD)和点面距离(P2F)上都有显著提升,分别比性能次优的网络模型优化了7.863%,21.631%,14.686%。可视化结果证明了PMA-PU具有性能更好的特征提取器,能够生成细粒度更高、形状更接近真实值的密集点云。The current deep learning-based point cloud upsampling method lacks the attention to a local area feature correlation and multi-scale extraction of global features,resulting in the dense output point cloud with too many outliers and low fine-grained granularity.To solve the above problem,a parallel multi-scale with attention mechanism for point cloud upsampling(PMA-PU)network is proposed,which consists of a feature extractor,a feature expander,a coordinate refiner and a coordinate reconstructor.Firstly,giving an N×3 sparse point cloud as input,a parallel multi-scale feature extraction module(PMA)with an embedded attention mechanism is designed to map the point cloud in 3D space to the high-dimensional feature space to obtain the global and local feature information of the point cloud.Secondly,the high-dimensional point cloud features are obtained after expanding the dimensionality of the point cloud features using the edge convolution feature expander to better preserve the edge information of the point cloud features,and the high-dimensional point cloud features are converted back to the 3D space by the coordinate reconstructors.Finally,the output point cloud details are fine-tuned by using the coordinate refiners.The results of the PMA-PU comparison experiments on the synthetic dataset PU1K show that the generated dense point cloud has significant improvement in the three evaluation metrics,Chamfer Distance(CD),Hausdorff Distance(HD),and P2F(point-to-surface),which are significantly better than the second highest performance.The network models with the second highest performance are optimized by 7.863%,21.631%,and 14.686%,respectively.The visualization results demonstrate that PMA-PU has a better performce feature extractor,which can generate dense point clouds with higher fine granularity and a shape closer to the true value.
关 键 词:3D点云 深度学习 点云上采样 并行多尺度特征提取 注意力机制
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118