检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lingshuo MENG Xueluan GONG Yanjiao CHEN
机构地区:[1]College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China [2]School of Computer Science,Wuhan University,Wuhan 430072,China
出 处:《Chinese Journal of Electronics》2024年第4期1077-1092,共16页电子学报(英文版)
摘 要:Backdoor attacks pose great threats to deep neural network models. All existing backdoor attacks are designed for unstructured data(image, voice, and text), but not structured tabular data, which has wide real-world applications, e.g., recommendation systems, fraud detection, and click-through rate prediction. To bridge this research gap, we make the first attempt to design a backdoor attack framework, named BAD-FM, for tabular data prediction models. Unlike images or voice samples composed of homogeneous pixels or signals with continuous values, tabular data samples contain well-defined heterogeneous fields that are usually sparse and discrete. Tabular data prediction models do not solely rely on deep networks but combine shallow components(e.g., factorization machine, FM) with deep components to capture sophisticated feature interactions among fields. To tailor the backdoor attack framework to tabular data models, we carefully design field selection and trigger formation algorithms to intensify the influence of the trigger on the backdoored model. We evaluate BAD-FM with extensive experiments on four datasets, i.e.,HUAWEI, Criteo, Avazu, and KDD. The results show that BAD-FM can achieve an attack success rate as high as 100%at a poisoning ratio of 0.001%, outperforming baselines adapted from existing backdoor attacks against unstructured data models. As tabular data prediction models are widely adopted in finance and commerce, our work may raise alarms on the potential risks of these models and spur future research on defenses.
关 键 词:Backdoor attacks Tabular data Click-through rate prediction Deep neural network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170