检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematical Sciences,East China Normal University,Shanghai 200241,China [2]Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice,School of Mathematical Sciences,East China Normal University,Shanghai 200241,China
出 处:《Journal of Systems Science & Complexity》2024年第4期1446-1469,共24页系统科学与复杂性学报(英文版)
基 金:supported in part by the National Natural Science Foundation of China under Grant No.62261136550;in part by the Basic Research Project of Shanghai Science and Technology Commission under Grant No.20JC1414000。
摘 要:The authors propose a data-driven direct adaptive control law based on the adaptive dynamic programming(ADP) algorithm for continuous-time stochastic linear systems with partially unknown system dynamics and infinite horizon quadratic risk-sensitive indices.The authors use online data of the system to iteratively solve the generalized algebraic Riccati equation(GARE) and to learn the optimal control law directly.For the case with measurable system noises,the authors show that the adaptive control law approximates the optimal control law as time goes on.For the case with unmeasurable system noises,the authors use the least-square solution calculated only from the measurable data instead of the real solution of the regression equation to iteratively solve the GARE.The authors also study the influences of the intensity of the system noises,the intensity of the exploration noises,the initial iterative matrix,and the sampling period on the convergence of the ADP algorithm.Finally,the authors present two numerical simulation examples to demonstrate the effectiveness of the proposed algorithms.
关 键 词:Adaptive dynamic programming direct adaptive control generalized algebraic Riccati equation risk-sensitive control
分 类 号:O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.199