Jackknife Model Averaging for Quantile Single-Index Coefficient Model  

在线阅读下载全文

作  者:SUN Xianwen ZHANG Lixin 

机构地区:[1]School of Mathematical Sciences,Zhejiang University,Hangzhou 310058,China [2]School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018,China

出  处:《Journal of Systems Science & Complexity》2024年第4期1685-1713,共29页系统科学与复杂性学报(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant Nos.U23A2064 and 12031005。

摘  要:In the past two decades,model averaging,as a way to solve model uncertainty,has attracted more and more attention.In this paper,the authors propose a jackknife model averaging(JMA) method for the quantile single-index coefficient model,which is widely used in statistics.Under model misspecification,the model averaging estimator is proved to be asymptotically optimal in terms of minimizing out-of-sample quantile loss.Simulation experiments are conducted to compare the JMA method with several model selections and model averaging methods,and the results show that the proposed method has a satisfactory performance.The method is also applied to a real dataset.

关 键 词:Final prediction error JMA criterion model averaging quantile loss single-index coefficient model 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象