检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董可豪 周敬之 周峰 陈海家 淮秀兰 李栋[1] DONG Kehao;ZHOU Jingzhi;ZHOU Feng;CHEN Haijia;HUAI Xiulan;LI Dong(School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,Jiangsu,China;Nanjing College,University of Chinese Academy of Sciences,Nanjing 211135,Jiangsu,China;Nanjing Institute of Future Energy System,Nanjing 211135,Jiangsu,China;Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China)
机构地区:[1]南京师范大学能源与机械工程学院,江苏南京210023 [2]中国科学院大学南京学院,江苏南京211135 [3]中科南京未来能源系统研究院,江苏南京211135 [4]中国科学院工程热物理研究所,北京100190
出 处:《化工学报》2024年第7期2505-2521,共17页CIESC Journal
基 金:国家自然科学基金项目(52006218)。
摘 要:随着超薄热管等元件进一步超薄化,蒸汽腔厚度减小导致蒸汽流动压降急剧增大,传热热阻增加,传输极限降低。搭建了超薄受限空间气体流动压降实验装置,开展空气流动实验,获得了不同通道高度(0.1~0.5 mm)、不同表面丝网孔径(0.036~0.104 mm)和不同流速(1~10 m/s)下的压降变化。结果表明:通道高度和流速对压降产生显著影响,而表面丝网孔径并不会;3个影响因素按显著程度依次为通道高度、流速、表面丝网孔径;随表面丝网孔径的减小,压降逐渐增大;随通道高度的减小,压降先缓慢增大,在减至0.3 mm后压降开始剧烈上升;随流速的增加,压降增大且近似呈正比例变化关系。最后基于实验数据修正了微通道层流情况下沿程阻力系数相关性预测关联式,以便更准确地预测气体压降。To meet the heat dissipation requirements of highly integrated and high-power electronic devices in the 5G era,the use of ultra-thin heat pipes and ultra-thin vapor chambers is rapidly increasing.The extreme thinning of heat pipes/vapor chambers has become a hot research topic in the current industry and academia,as the heat generation of components is increasing and the space available for heat dissipation components inside electronic devices is becoming more compact.Some simulation studies have indicated that as the height of the vapor chamber is reduced to a certain extent,the flow resistance of vapor in the ultra-thin space increases sharply,consequently precipitating a steep decline in the thermal performance of ultra-thin heat pipes/vapor chambers.Hence,studying and analyzing the gas flow in extremely thin spaces is of great significance for exploring the pressure drop characteristics of vapor flow,assisting in solving the design challenges of ultra-thin heat vapor chambers/heat pipes,facilitating their further thinning and application.In this paper,the experimental apparatus for gas flow pressure drop in ultra-thin confined spaces was constructed,and preliminary air flow pressure drop experiments were conducted,obtaining data on air pressure drop changes under different channel heights(0.1—0.5 mm),surface mesh aperture(0.036—0.104 mm),and flow velocities(1—10 m/s).The results show that as the channel height increases,the Fanning friction factor f gradually decreases.The influencing factors of pressure drop were ranked by significance:channel height,flow velocity,mesh aperture.Flow velocity and channel height both have a significant impact on pressure drop,while mesh aperture has no significant effect.The pressure inside the channel gradually increases as the surface mesh aperture decreases.As the channel height decreases,the pressure drop inside the channel first increases slowly,and after decreasing to a critical height of 0.3 mm,the pressure drop inside the channel starts to increase significantly.
关 键 词:微通道 流动 摩擦因子 微尺度 压降 超薄均热板 超薄环路热管
分 类 号:TK172.4[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.28.190