基于智能算法的无线传感器数据处理系统设计  

Design of Wireless Sensor Data Processing System Based on Intelligent Algorithm

在线阅读下载全文

作  者:杨龙飞 李淑芳 李亚辉 YANG Longfei;LI Shufang;LI Yahui(Pingdingshan Vocational and Technical College,Pingdingshan,Henan 467000,China;Henan Vocational College of Quality Engineering,Pingdingshan,Henan 467000,China)

机构地区:[1]平顶山职业技术学院,河南平顶山467000 [2]河南质量工程职业学院,河南平顶山467000

出  处:《移动信息》2024年第7期47-49,共3页MOBILE INFORMATION

摘  要:基于无线传感器网络中数据采集和处理的复杂性及其对实时性、准确性的需求,文中提出了一种基于深度学习的数据处理系统。该系统的结构设计充分考虑了无线传感器网络的特点,通过数据采集、处理和分析三大模块的协同工作,有效提升了数据的处理效率和分析精度。在数据采集模块,系统基于多源传感器实现了高效的数据采集和预处理。数据处理模块进一步优化了数据的清洗和特征提取过程,以确保数据质量。数据分析模块则应用深度学习算法来深入挖掘数据的潜在价值,为决策提供依据。该系统不仅提高了数据处理的效率和准确性,还利用深度学习技术加强了对数据的深层次分析,显著提升了无线传感器网络的整体性能和应用价值。Based on the complexity of data collection and processing in wireless sensor networks and the demand for real-time and accuracy,a data processing system based on deep learning is proposed in this paper.The structural design of the system fully considers the characteristics of wireless sensor networks.Through the collaborative work of data collection,processing and analysis,the data processing efficiency and analysis accuracy are effectively improved.In the data collection module,the system realizes efficient data collection and preprocessing based on multi-source sensors.The data processing module further optimizes the data cleaning and feature extraction process to ensure data quality.The data analytics module applies deep learning algorithms to deeply mine the potential value of data and provide a basis for decision-making.The system not only improves the efficiency and accuracy of data processing,but also uses deep learning technology to strengthen the deep analysis of data,which significantly improves the overall performance and application value of wireless sensor networks.

关 键 词:无线传感器网络 数据处理系统 深度学习 

分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象