数控弯管加工碰撞检测算法研究  

Research on Collision Detection Algorithm for NC Pipe Bending Processing

在线阅读下载全文

作  者:徐瑞康 倪俊芳[1] 李鹏举 贾帅 王宇峰 刘庆升 XU Ruikang;NI Junfang;LI Pengju;JIA Shuai;WANG Yufeng;LIU Qingsheng(School of Mechanical and Electrical Engineering,Soochow University,Suzhou Jiangsu 215137,China;Syntec Technology(Suzhou)Co.,Ltd.,Suzhou Jiangsu 215021,China)

机构地区:[1]苏州大学机电工程学院,江苏苏州215137 [2]新代科技(苏州)有限公司,江苏苏州215021

出  处:《机床与液压》2024年第14期14-21,共8页Machine Tool & Hydraulics

基  金:江苏省自然科学基金项目(BK20220500);江苏省卓越博士后项目(2022ZB560)。

摘  要:针对数控弯管加工碰撞检测算法计算效率低、侧重性差的问题,提出一种改进最近面碰撞检测算法。采用KPP-Means聚类算法构建三维模型层次包围二叉树结构,将碰撞检测算法划分为基于包围盒的初步碰撞检测与基于三角形面片距离场的精细碰撞检测;将一组包围盒之间的碰撞检测简化为空间线段与有限平面之间的干涉检测。基于OpenGL框架开发仿真系统对此算法进行验证。结果表明:改进最近面碰撞检测算法能正确判断加工仿真中数控弯管机零部件与成形管件的碰撞情况,同时与经典算法相比碰撞检测效率提升了42.4%,并减少了0.29 s的总仿真时间。Aiming at the problem of low calculation efficiency and poor emphasis of NC pipe bending processing collision detection algorithm,an optimized nearest surface(ONS)collision detection algorithm was proposed.KPP-Means clustering algorithm was used to construct 3D model hierarchical bounding box binary tree structure,and collision detection algorithm was divided into preliminary collision detection based on bounding box and fine collision detection based on distance field of triangular surface.The collision detection between a group of bounding box was simplified as the interference detection between a spatial segment and a finite plane.The simulation system based on OpenGL framework was developed to verify the algorithm.The results show that the ONS collision detection algorithm can correctly judge the collision between the NC pipe bending processing parts and the formed pipe fittings in the processing simulation,and the collision detection efficiency is increased by 42.4%compared with the classical algorithm,and the total simulation time of 0.29 s is reduced.

关 键 词:数控弯管机 碰撞检测 运动学仿真 层次树 多弯导管 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术] TP242.2[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象