检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李振宝 伊明[1,2] 李富强 张磊 姜万录 LI Zhenbao;YI Ming;LI Fuqiang;ZHANG Lei;JIANG Wanlu(Engineering Technology Research Institute,CNPC Xibu Drilling Engineering Company Limited,Karamay Xinjiang 834000,China;School of Petroleum Engineering,Yangtze University,Wuhan Hubei 430100,China;Hebei Province Key Laboratory of Heavy Machinery Fluid Power Transmission and Control,Yanshan University,Qinhuangdao Hebei 066004,China;Key Laboratory of Advanced Forging&Stamping Technology and Science Ministry of Education of China,Yanshan University,Qinhuangdao Hebei 066004,China)
机构地区:[1]中石油西部钻探工程有限公司,工程技术研究院,新疆克拉玛依834000 [2]长江大学石油工程学院,湖北武汉430100 [3]燕山大学,河北省重型机械流体动力传输与控制重点实验室,河北秦皇岛066004 [4]燕山大学,先进锻压成形技术与科学教育部重点实验室,河北秦皇岛066004
出 处:《机床与液压》2024年第14期219-226,共8页Machine Tool & Hydraulics
基 金:中国石油集团油田技术服务有限公司科学研究与技术开发项目(2023T-001-001);国家自然科学基金面上项目(52275067);河北省自然科学基金项目(E2023203030)。
摘 要:针对轴向柱塞泵中心弹簧失效故障难以有效评估的问题,提出一种基于梅尔频率倒谱系数(MFCC)和深度信念神经网络(DBN)的液压泵劣化程度评估方法。对现场采集的正常数据和3种不同程度中心弹簧失效故障的液压泵振动信号进行信号预处理,包括预加重、分帧和加窗等;对预处理后的信号进行快速傅里叶变换(FFT),得到其频率谱和功率谱,然后让其通过Mel滤波器组,得到信号的对数能量;最后对对数能量进行离散余弦变换,得到信号的倒谱系数和一阶差分系数,并以此构成特征向量。基于DBN方法搭建深度学习模型,对特征向量进行学习,将测试样本导入深度学习模型,对中心弹簧失效程度进行评估,并将倒谱系数和一阶差分系数的识别结果进行对比。结果表明:当选择倒谱系数为特征向量时,具有较高的识别精度,能够有效识别轴向柱塞泵中心弹簧的性能劣化程度。Aiming at the problem that the central spring failure of axial piston pump is difficult to be evaluated effectively,a hydraulic pump deterioration degree evaluation method based on Mel frequency cepstrum coefficient(MFCC)and deep belief network(DBN)was proposed.The normal data and three different degrees of center spring failure data collected in the field were subjected to signal pre-processing,including pre-emphasis,framing and windowing.Fast Fourier transform(FFT)was applied to the pre-processed signal,and their frequency spectrum and power spectrum were obtained.Then they were passed through the Mel filter bank to get the logarithmic energy of the signal.Finally,discrete cosine transform was performed for logarithmic energy,the Mel frequency cepstrum coefficients and the first-order difference coefficients of the signal were obtained,forming the feature vector.A deep learning model was built based on the DBN method to learn the feature vectors,and the test samples were imported into the deep learning model to evaluate the central spring failure degree.The recognition results of the Mel frequency cepstrum coefficients and the first-order difference coefficients were compared.The results show that when the Mel frequency cepstrum coefficients are selected as the feature vectors,they have a high recognition accuracy and can effectively identify the degree of performance deterioration of the center spring of the axial piston pump.
关 键 词:梅尔频率倒谱系数 深度信念神经网络 轴向柱塞泵 劣化评估
分 类 号:TH137[机械工程—机械制造及自动化] TP206[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200