检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张云佐 郑宇鑫[1] 武存宇 张天 ZHANG Yun-zuo;ZHENG Yu-xin;WU Cun-yu;ZHANG Tian(School of Information Science and Technology,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;Hebei Key Laboratory of Electromagnetic Environmental Effects and Information Processing,Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
机构地区:[1]石家庄铁道大学信息科学与技术学院,石家庄050043 [2]石家庄铁道大学河北省电磁环境效应与信息处理重点实验室,石家庄050043
出 处:《吉林大学学报(工学版)》2024年第7期1894-1902,共9页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(61702347,62027801);河北省自然科学基金项目(F2022210007,F2017210161);河北省高等学校科学技术研究项目(ZD2022100);中央引导地方科技发展资金项目(226Z0501G)。
摘 要:为解决现有方法在复杂环境中检测精度低的问题,提出了一种基于双特征提取网络的复杂环境车道线精准检测算法。首先,搭建双特征提取网络,获取不同尺度的特征图,提取更有效的特征,提高模型在复杂环境下的特征提取能力。然后,构建跨通道联合注意力模块,提高模型对车道线细节的关注度,抑制无用信息。最后,结合改进的空洞空间金字塔池化模块扩大图像感受野,提高模型对上下文信息的利用率,以强化算法的检测能力。经实验验证,本文算法在CULane数据集上的F_(1)-measure达到了72.43%,相比于基线模型提升了4.03%,在复杂的场景中对车道线进行检测时效果提升明显。The existing lane detection methods have the problem of low detection accuracy due to fuzzy details in a complex environment.Therefore,this paper proposes an accurate lane detection algorithm based on a double feature extraction network in a complex environment.Firstly,a double feature extraction network is built to obtain feature maps of different scales,extract more effective features,and improve the feature extraction ability of the model in complex environments.Besides,a cross-channel joint attention module is constructed to improve the attention of the model to lane details and suppress useless information.Finally,combined with the improved void space pyramid pooling module,the receptive field is enlarged to improve the utilization of context information of the model,to strengthen the detection ability.The experimental results show that the F_(1)-measure of the proposed algorithm on CULane dataset reaches 72.43%,which is 4.03%higher than that of the mainstream UFSD algorithm.When detecting lane lines in complex scenes,the detection effect of the proposed method is significantly improved,which has been proven to be able to meet the needs of practical applications.
关 键 词:计算机应用 车道线检测 双特征提取 多尺度 跨通道联合注意力
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7