Shale oil production predication based on an empirical modelconstrained CNN-LSTM  被引量:1

在线阅读下载全文

作  者:Qiang Zhou Zhengdong Lei Zhewei Chen Yuhan Wang Yishan Liu Zhenhua Xu Yuqi Liu 

机构地区:[1]Research Institute of Petroleum Exploration and Development,PetroChina,Beijing,100083,China [2]School of Energy Resources,China University of Geosciences,Beijing,100083,China

出  处:《Energy Geoscience》2024年第2期232-239,共8页能源地球科学(英文)

基  金:funded by the National Natural Science Foundation of China(No.51974356).

摘  要:Accurately predicting the production rate and estimated ultimate recovery(EUR)of shale oil wells is vital for efficient shale oil development.Although numerical simulations provide accurate predictions,their high time,data,and labor demands call for a swifter,yet precise,method.This study introduces the DuongeCNNeLSTM(D-C-L)model,which integrates a convolutional neural network(CNN)with a long short-term memory(LSTM)network and is grounded on the empirical Duong model for physical constraints.Compared to traditional approaches,the D-C-L model demonstrates superior precision,efficiency,and cost-effectiveness in predicting shale oil production.

关 键 词:Shale oil Production prediction D-C-L Physical constraint 

分 类 号:P618.13[天文地球—矿床学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象