检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方涛
出 处:《水利科技与经济》2024年第8期86-88,105,共4页Water Conservancy Science and Technology and Economy
摘 要:随着深度学习的发展,通过视频实现水位监测成为近年来研究热点。为了提高水位监测的准确性,研究开发一种结合Mask RCNN和YOLOv5的新型水位监测方法。首先利用Mask RCNN模型,识别视频画面中的水尺区域并进行精确分割;然后通过YOLOv5模型,对分割后的水尺区域进行字符识别,准确捕捉水尺上的“m”字符、“E”字符以及数字字符,并记录这些字符在视频画面中的坐标位置;再通过分析字符的代表高度及其坐标位置,计算出水位数据。研究显示,该方法通过精确的区域分割和高效的字符识别,可显著提高水位监测的准确率和可靠性,表明其在水位监测中的应用潜力。
关 键 词:水位监测 深度学习 Mask RCNN YOLOv5
分 类 号:TV697.2[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49