检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁建立[1] 黄辉 曹卫东[1] DING Jian-li;HUANG Hui;CAO Wei-dong(Civil Aviation University of Chain,Tianjin 300000,China)
机构地区:[1]中国民航大学,天津300000
出 处:《航空计算技术》2024年第4期49-53,共5页Aeronautical Computing Technique
基 金:国家自然科学基金重点项目资助(U2233214,U2033205)。
摘 要:为了更加准确和高效地预测大面积航班延误时间,提出了基于数字孪生的航班延误时间预测方法。首先,从航班链整体的角度出发,依据航班运行业务特点和数字孪生技术特征设计了航班链数字孪生系统框架,综合航班链全生命周期内相关航班和机场的运行状态特征;其次,基于Fastformer和GraphSAGE模型设计了航班链时空特征提取模型(ST-Former),充分挖掘航班之间的时空关联特征。实验表明,该方法预测效率和准确度显著提升,平均预测误差在3 min左右。In order to predict flight delays in large areas more accurately and efficiently,a flight delay prediction method based on digital twins is proposed.First,from the perspective of the flight chain as a whole,a flight chain digital twin system framework was designed based on the flight operation business characteristics and digital twin technology characteristics,integrating the operating status characteristics of relevant flights and airports during the entire life cycle of the flight chain.Secondly,a flight chain digital twin system framework was designed based on the Fastformer and GraphSAGE models designed a flight chain spatio-temporal feature extraction model(ST-Former)to fully explore the spatio-temporal correlation features between flights.Experiments showed that the prediction efficiency and accuracy of this method were significantly improved,and the average prediction error was within 3 minutes.
关 键 词:航班延误预测 数字孪生 时空关联特征 Fastformer GraphSAGE
分 类 号:V35[航空宇航科学与技术—人机与环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249