基于Copula函数模型的计算机网络可靠性预测方法  

Computer Network Reliability Prediction Method Based on Copula Function Model

在线阅读下载全文

作  者:包慧峰 BAO Huifeng(The 32nd Research Institute of China Electronics Technology Group Corporation,Shanghai 201808,China)

机构地区:[1]中国电子科技集团公司第三十二研究所,上海201808

出  处:《智能物联技术》2024年第3期74-77,共4页Technology of Io T& AI

摘  要:由于计算机网络组件之间的依赖关系无法有效捕捉,导致计算机网络可靠性预测时间延迟较长。对此,设计一种基于Copula函数模型的计算机网络可靠性预测方法。从起始节点出发,通过优先搜索逐步扩展至相邻节点,直至到达目标节点,确定网络的最小路集。运用Copula函数模型有效捕捉多个网络组件之间的依赖关系,设置可靠性指标。基于这些可靠性指标和最小路集信息,构建一个计算机网络可靠性预测模型。该模型不仅考虑了网络结构的特点,还融合了历史运行数据,从而能够实现对计算机网络可靠性的准确预测。实验结果表明,设计的基于Copula函数模型的计算机网络可靠性预测方法,平均预测时间延迟仅0.27 s,优势显著,表明该方法能够在较短的时间内完成预测任务,且预测结果可靠。Because the dependence relationship between computer network components cannot be captured effectively,the time delay of computer network reliability prediction is long.In this paper,a method of computer network reliability prediction based on Copula function model is designed.Starting from the initial node,the network is gradually extended to adjacent nodes through priority search until the target node is reached,and the minimum path set is determined.The Copula function model is used to capture the dependency between multiple network components effectively and set the reliability index.Based on these reliability indexes and minimum path set information,a computer network reliability prediction model is constructed.The model not only considers the characteristics of the network structure,but also integrates the historical operation data,so that the reliability of the computer network can be accurately predicted.The experimental results show that the average prediction time delay of the designed method based on Copula function model is only 0.27 s,which has significant advantages,indicating that the method can complete the prediction task in a relatively short time,and the prediction results are reliable.

关 键 词:Copula函数模型 计算机网络 可靠性预测 可靠性指标 可靠性评估函数 

分 类 号:TP311.1[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象