机构地区:[1]郑州大学,化学学院绿色催化中心,郑州450001 [2]Department of Chemistry,University of Sheffield,Sheffield,S37HF,UK [3]Department of Physics,Technical University of Denmark,Kongens Lyngby 2800,Denmar
出 处:《物理化学学报》2024年第6期60-62,共3页Acta Physico-Chimica Sinica
基 金:国家自然科学基金项目(51973200,52122308);郑州国家超级计算中心资助。
摘 要:高效、高选择性的单原子催化剂(SACs)在电催化硝酸盐还原制氨过程中具有重要作用。然而,由于中间体、金属活性中心和配位环境之间复杂的竞争性电子相互作用,仍然面临挑战。本研究采用密度泛函理论(DFT)计算,对27种SACs以及双层SACs(BSACs)进行了系统研究,通过轴向d-d轨道杂化提高了从SACs到BSACs的电催化硝酸盐还原反应(NO_(3)RR)的活性和选择性。考虑到可能的O端、N端、NO端和NO二聚体途径,计算结果显示,在单层SACs中,Ti-Pc和V-Pc分别具有优异的极限电位(U_(L)),分别为-0.24和-0.48V。形成能、溶解势以及从头算分子动力学结果表明,在反应条件下,这些催化剂非常稳定。在这些单层TM-Pc中,它们的d带能级和占据数受到d_(xz)/d^(yz)和p_(z)轨道杂化的影响。其轴向d_(z^(2))轨道的可用性通过形成d_(z^(2))-d_(z^(2))相互作用来进一步调整d带和反应性。在此基础上,以Ti-Pc和V-Pc为底物,通过形成轴向d-d轨道杂化来构建BSACs,为调节NO_(3)RR催化性能提供了一种独特的新途径。重要的是,我们发现d带中心(εd)、d_(xz)+d_(yz)轨道的占据数和U_(L)之间存在二维火山关系,用于描述它们的NO_(3)RR催化性能。最佳的BSACs应该同时具备适当的ε_(d)和d_(xz)+d_(yz)占用数。Ti-Mo和Ti-Ta被确定为出色的NO_(3)RR催化剂,其U_(L)均降低至-0.13 V。而d_(z^(2))-d_(z^(2))轨道之间的杂化则增强了双层金属之间的电荷转移和结构稳定性。缺乏相邻的金属位点将导致生成NO_(2)、NO和N_(2)的能垒较高,从而抑制副产物生成。最终,本研究揭示了在SACs和BSACs上对硝酸盐还原进行合理优化的方法,可为改进电催化剂的设计提供指导。Designing efficient single-atom catalysts(SACs)with high selectivity for the electrocatalytic reduction of nitrate to ammonia formation is both crucial and challenging.This challenge arises due to the intricate and competitive electronic interactions among intermediates,metal active centers,and coordination environments.In this work,we present a comprehensive investigation detailing how to enhance the activity and selectivity of the electrocatalytic nitrate reduction reaction(NO3RR)by transitioning from single-layer SACs to bilayer SACs(BSACs).This enhancement is achieved through axial d-d orbital hybridization,as elucidated by a systematic study of 27 SACs and BSACs utilizing density functional theory(DFT)calculations.Considering potential pathways involving O-terminal,N-terminal,NO-terminal,and NO-dimer configurations,our calculations reveal that among monolayer SAC candidates,Ti-Pc and V-Pc exhibit low limiting potentials(U_L)of-0.24 and-0.48 V,respectively.Furthermore,analyses of formation energy,dissolution potential,and ab initio molecular dynamics results demonstrate the robust stability of these catalysts under reaction conditions.In these single-layer transition metal(TM)-Pc complexes,the d-band energy levels and occupation numbers are influenced by d_(xz)/d_(yz)and p_(z)orbital hybridizations.Notably,the presence of axial d_(z^(2))orbitals introduces a novel avenue for fine-tuning d-band characteristics and reactivity through d_(z^(2))-d_(z^(2))interactions.Building on these insights,the formation of BSACs using Ti-Pc and V-Pc as substrates,facilitated by axial d-d orbital hybridization,offers a distinctive approach to modulating the catalytic performance of NO_3RR.Significantly,we establish a two-dimensional volcano correlation encompassing the d-band center(ε_d),d_(xz)+d_(yz)orbital occupation numbers,and U_(L)to describe NO_(3RR)catalytic efficacy.Optimal BSACs should possess concurrent appropriateε_(d)and d_(xz)+d_(yz)occupation numbers.Remarkably,Ti-Mo and Ti-Ta BSACs emerge as exceptional NO_(3R
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...