多级钯-铜-银多孔纳米花作为高效电催化剂催化CO_(2)还原为C_(2+)产物  

Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO_(2) Reduction to C_(2+) Products

在线阅读下载全文

作  者:孙浩宇 李敦 闵媛媛 王莹莹 马艳芸[4] 郑逸群 黄宏文 Haoyu Sun;Dun Li;Yuanyuan Min;Yingying Wang;Yanyun Ma;Yiqun Zheng;Hongwen Huang(School of Chemistry,Chemical Engineering,and Materials,Jining University,Qufu 273155,Shandong Province,China;College of Materials Science and Engineering,Hunan University,Changsha 410082,China;Health Management Department,Shandong Vocational College of Light Industry,Zibo 255300,Shandong Province,China;Institute of Functional Nano&Soft Materials(FUNSOM),Jiangsu Key Laboratory of Advanced Negative Carbon Technologies,Soochow University,Suzhou 215123,Jiangsu Province,China)

机构地区:[1]济宁学院,化学化工与材料学院,山东曲阜273155 [2]湖南大学,材料科学与工程学院,长沙410082 [3]山东轻工职业学院,健康管理系,山东淄博255300 [4]苏州大学,功能纳米与软物质研究院,江苏省先进负碳技术重点实验室,江苏苏州215123

出  处:《物理化学学报》2024年第6期67-69,共3页Acta Physico-Chimica Sinica

基  金:国家自然科学基金(21701100);山东省自然科学基金(2020MB048,ZR2022MB120);山东省高等学校青创人才引育计划(储能与环境材料团队);山东省能源转化与纳米催化高校特色实验室,济宁学院博士启动经费(2020BSZX01);济宁学院“百名卓越人才”支持计划(2020ZYRC05);苏州功能纳米与软物质重点实验室,苏州市纳米科技协同创新中心,111项目,碳基功能材料与器件国际联合研究实验室资助。

摘  要:近年来,具有可控元素分布的铜基多金属纳米晶作为CO_(2)还原反应(CO_(2)RR)的电催化剂,受到了广泛研究。通过对铜电催化剂进行二次甚至多次的金属元素修饰,能够有效改变其整体d带结构并引起d带中心的位移。这种变化可以影响铜对关键中间体的表面亲和力,从而影响后续的催化途径。除了调整电子结构,形貌工程也成为提高CO_(2)RR电催化性能的有效手段。相对于随机形状的球形颗粒,基于二维纳米片构建的三维多孔结构有利于最大限度地暴露表面原子,为催化过程中产生的关键中间体提供丰富的扩散通道和反应中心。然而,通过设计合成路线构建这种类型的纳米结构是一项技术挑战,传统的分步自组装策略耗时且难以精确控制结构。因此,我们的研究旨在实现高纯度的合成方法,制备这种独特的纳米结构,并精确调控元素组成和电子结构,以探索结构优势与CO_(2)RR电化学性能改善之间的潜在关系,具有重要的应用价值。在此研究中,我们合理设计了钯-铜-银(Pd-Cu-Ag)纳米晶的二维-三维杂化结构,实现了可控的合成过程,并验证了其在电化学CO_(2)还原中的应用潜力。合成过程中,通过使用封装剂十八烷基三甲基氯化铵,成功地将Au@Cu_(x)O纳米球转化为层状CuAg纳米花(HNFs)。有趣的是,该过程中原位形成了作为构建单元的纳米薄片。通过对CuAg HNFs与Na_(2)PdCl_(4)进行电偶置换,除去了Ag和Cu,引入了零价的Pd,并在纳米片上形成了大量孔隙。我们对这些CuAg电催化剂进行了CO_(2)RR测试,结果显示Pd_(0.7)Cu_(40.0)Ag_(59.7)PHNs在C_(2+)产物选择性(69.5%)和C_(2+)分电流密度(-349.1mA·cm^(-2))方面表现出最佳性能。密度泛函理论(DFT)模拟表明,PdAgCu表面具有独特的电子性质,降低了C-C偶联反应的能垒,凸显了Pd掺杂对CuAg电催化剂CO_(2)还原的卓越性能。本研究为基于多孔纳米薄片构建多层次多金属纳�In recent years,Cu-based multi-metallic nanocrystals with controlled elemental distributions have been extensively studied for potential applications as electrocatalysts for CO_(2)reduction reaction(CO_(2)RR).Modifying Cu electrocatalysts with secondary or additional metals offers a viable approach to manipulate the overall d-band structure which would cause the shift in the d-band center.Such manipulation can affect the surface affinity of Cu towards key intermediates and thus the following catalytic pathway.Apart from endeavors to adjust the electronic structure,morphological engineering provides effective avenues to enhance the electrocatalytic performance of CO_(2) RR.In contrast to quasi-spherical particles with irregular shapes,a 3D-assembled porous structure utilizing 2D nanosheets as building blocks offers advantages such as maximizing surface atom exposure and creating numerous diffusion channels and reactive sites for intermediates formed during catalysis.Yet,it is technique challenging to construct such type of nanoarchitecture via a rationally-design synthetic routes and traditional stepwise self-assembling strategy is time-consuming and lack of versatile control over the structural parameters of resulting products.Therefore,it holds significant value to develop a synthesis method capable of yielding high-purity formations of unique nanostructures.These structures should possess accurately controlled elemental compositions and electronic configurations,and establish a potential correlation between structural benefits and enhanced electrochemical performance in CO_(2) RR.Herein,we report the controlled synthesis of palladium-copper-silver(Pd-Cu-Ag)nanocrystals with rationally-designed two-dimensional(2D)-threedimensional(3D)hybrid architectures and validated with the promising use for electrochemical CO_(2)reduction(CO_(2)RR).The synthetic procedure includes the conversion of Au@Cu_(x)O nanospheres into Cu Ag hierarchical nanoflowers(HNFs),as directed by the capping agent octadecyltrimethyl ammonium ch

关 键 词:电催化CO_(2)还原 贵金属 多孔 多级结构 C_(2+)产物 

分 类 号:O643[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象