基于改进粒子群算法的输电线路舞动断线概率预测研究  

Research on the Probability Prediction of Transmission Line Breakage by Galloping Based on Improved Particle Swarm Optimization Algorithm

在线阅读下载全文

作  者:王懂 单军 陆衡 王唱 刘影影 WANG Dong;SHAN Jun;LU Heng;WANG Chang;LIU Yingying(State Grid Anhui Power Electric Limited Company Suzhou Power Supply Company,Suzhou 234000,China)

机构地区:[1]国网安徽省电力有限公司宿州供电公司,安徽宿州234000

出  处:《河南科技》2024年第13期4-9,共6页Henan Science and Technology

摘  要:【目的】为了解决冰风暴灾害下输电线路舞动断线问题,提出了基于改进粒子群算法的输电线路舞动断线概率预测模型。【方法】首先,采用改进粒子群算法确定输电线路在冰风暴灾害下风荷载与冰荷载的广义极值分布参数;其次,根据输电线路舞动的起舞风速和覆冰密度求取舞动情况下线路冰荷载和风荷载的极值分布。【结果】在此基础上,基于二元t-Copula连接函数计算线路舞动时风荷载和冰荷载的联合概率分布,实现了线路舞动断线的概率预测。【结论】结合湖南冬季输电线路舞动断线的历史数据,验证了改进粒子群算法的优越性和该模型的准确性,为输电线路舞动预报和指导线路提前部署防舞动措施提供了依据。[Purposes]In order to solve the problem of transmission line breakage by galloping under ice storm,a probability prediction model of transmission line breaking based on improved particle swarm optimization(PSO)algorithm is proposed.[Methods]Firstly,the generalized extreme value(GEV)distribution parameters of wind load and ice load of transmission lines under ice storm disasters are determined by improved PSO algorithm;then,according to the wind speed and icing density of the transmission line galloping,the extreme value distribution of the ice load and wind load of the line under galloping is obtained.[Findings]Based on the binary t-Copula function,the joint probability distribution of ice load and wind load is obtained,and the probability prediction of transmission line breakage by galloping is realized.[Conclusions]Finally,using actual historical data of transmission line breakage by galloping in winter of Hunan Province,the superiority of the improved PSO algorithm and the accuracy of the proposed prediction model are verified,which can lay a foundation for transmission line breakage by galloping prediction and provide a basis for pre-deployment of anti-galloping measures.

关 键 词:输电线路舞动 改进粒子群算法 t-Copula函数 广义极值分布 断线概率 

分 类 号:TM751[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象