W^(m,p(t,x))-Estimate for a Class of Higher-Order Parabolic Equations with Partially BMO Coefficients  

在线阅读下载全文

作  者:TIAN Hong HAO Shuai ZHENG Shenzhou 

机构地区:[1]College of Science,Tianjin University of Technology,Tianjin 300384,China [2]Department of Mathematics,Beijing Jiaotong University,Beijing 100044,China

出  处:《Journal of Partial Differential Equations》2024年第2期198-234,共37页偏微分方程(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.11901429 and 12071021).

摘  要:We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is mainly assumed that the coefficients are allowed to be merely measurable in one of the spatial variables and have a small BMO quasi-norm in the other variables at a sufficiently small scale,while the boundary of the underlying domain belongs to the so-called Reifenberg flatness.This is a natural outgrowth of Dong-Kim-Zhang’s papers[1,2]from the W^(m,p)-regularity to the W^(m,p(t,x))-regularity for such higher-order parabolic equations with merely measurable coefficients with Reifenberg flat domain which is beyond the Lipschitz domain with small Lipschitz constant.

关 键 词:A higher-order parabolic equation Sobolev spaces with variable exponents partially BMO quasi-norm Reifenberg flat domains log-Hölder continuity 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象