检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪雨晴 朱广丽[1,2] 段文杰 李书羽 周若彤 WANG Yuqing;ZHU Guangli;DUAN Wenjie;LI Shuyu;ZHOU Ruotong(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China;Institute of Artificial Intelligence,Hefei Comprehensive National Science Center,Hefei Anhui 230088,China)
机构地区:[1]安徽理工大学计算机科学与工程学院,安徽淮南232001 [2]合肥综合性国家科学中心人工智能研究院,合肥230088
出 处:《计算机应用》2024年第8期2393-2399,共7页journal of Computer Applications
基 金:国家自然科学基金面上项目(62076006);安徽高校协同创新项目(GXXT-2021-008);安徽理工大学研究生创新基金资助项目(2023cx2124)。
摘 要:心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机制的心理咨询文本情感分类模型,根据时序对历史情感词分配权重,进而提高分类准确率。利用构建的心理健康情感词典分别提取对话双方的历史情感词序列,再将当前句和历史情感词序列输入到双向长短期记忆(BiLSTM)网络获取对应的特征向量,并利用艾宾浩斯遗忘曲线对历史情感词序列分配权重。通过AOA机制获得惯性特征和交互特征,并结合文本特征输入到分类层计算情感倾向概率。在公开数据集Emotional First Aid Dataset上的实验结果表明,相较于Caps-DGCN(Capsule network and Directional Graph Convolutional Network)模型,所提模型的F1值提高了1.55%。可见,所提模型可以有效提升心理咨询文本的情感分类效果。Sentiment classification in psychological counseling scenes aims to obtain the sentiment polarity of the inquirer’s utterance,which can provide support for establishing psychological counseling Artificial Intelligence(AI)assistants.Existing methods obtain the sentiment polarity of text through contextual information,failing to consider the sentiment transmission between the current sentence and the forward neighbor sentences in the dialogue record.To address the issue,a model for sentiment classification of psychological counseling text was proposed based on Attention Over Attention(AOA)mechanism.Historical sentiment words were assigned weights by temporal sequence,which improved the accuracy of sentiment classification for psychological counseling text.In a dialogue,historical sentiment word sequences of both sides were extracted by constructed sentiment lexicon of mental health.Subsequently,the current sentence and two sequences of historical sentiment words were input into the Bidirectional Long Short-Term Memory(BiLSTM)network to get corresponding feature vectors.The Ebbinghaus forgetting curve was used to allocate internal weights to the sequences of historical sentiment words.Both inertia features and interaction features were captured by AOA mechanism.Then,the above two features along with the text features were input into the classification layer,calculating the probability of sentiment polarity.Experimental results on public dataset Emotional First Aid Dataset show that the proposed model improves F1 value by 1.55%compared with Capsule network and Directional Graph Convolutional Network(Caps-DGCN)model.Hence the proposed model can effectively improve the sentiment classification effect of psychological counseling text.
关 键 词:心理咨询 心理健康情感词典 艾宾浩斯遗忘曲线 交互注意力机制 双向长短期记忆网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49