检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黎志成[1,2] 方必兴 谢津 王心怡 周靖诗 曾祥丽[1,2] Li Zhicheng;Fang Bixing;Xie Jin;Wang Xinyi;Zhou Jingshi;Zeng Xiangli(Department of Otolaryngology-Head and Neck Surgery,the Third Affiliated Hospital of Sun Yat-sen University,Guangzhou 510630,China;Dizziness and Tinnitus Treatment Center,the Third Affiliated Hospital of Sun Yat-sen University,Guangzhou 510630,China;Department of Otolaryngology-Head and Neck Surgery,the Second Affiliated Hospital of Zhejiang University School of Medicine,Hangzhou 310009,China;the Brain Cognition and Brain Disease Institute,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China)
机构地区:[1]中山大学附属第三医院耳鼻咽喉头颈外科,广州510630 [2]中山大学附属第三医院眩晕耳鸣诊疗中心,广州510630 [3]浙江大学医学院附属第二医院耳鼻咽喉头颈外科,杭州310009 [4]中国科学院深圳先进技术研究院脑认知与脑疾病研究所,深圳518055
出 处:《中华耳鼻咽喉头颈外科杂志》2024年第7期727-734,共8页Chinese Journal of Otorhinolaryngology Head and Neck Surgery
基 金:国家自然科学基金面上项目(82171151);广州市科技计划项目产学研协同创新重大专项(201704030081)。
摘 要:目的探讨联合加权基因共表达网络分析(Weighted Gene Co-expression Network Analysis,WGCNA)及随机森林算法构建基于外周血差异表达基因(differentially expressed genes,DEGs)的主观性耳鸣客观分型模型的可行性。方法2019年10月至2020年6月期间,对中山大学附属第三医院37例慢性主观性高频耳鸣患者(代偿型21例,失代偿型16例)及20名健康志愿者通过高通量测序获得外周血DEGs。采用WGCNA构建不同表达模式的基因模块,并分析各自与耳鸣特征之间的关系。随后采用随机森林算法构建分型模型,并通过受试者工作特征曲线下面积(area under the curve,AUC)、准确度和F1-score对分型性能进行评价。结果12351个组间DEGs被分成9个基因模块,其中MEblue、MEgreen和MEbrown与健康志愿者组呈负相关,MEpink与耳鸣困扰组呈正相关。基于MEblue及MEpink分别构建"耳鸣-正常"及"代偿-失代偿"分型模型,AUC均>0.80,准确度均>90%,F1-score均>0.90,分型性能良好。结论外周血DEGs是慢性主观性耳鸣客观分型的潜在生物学指标,而WGCNA和随机森林算法的联合应用是构建慢性主观性耳鸣客观分型模型的可行方案。但模型的外延、跨数据集性能的验证,以及模型算法的优化仍需进一步探索并完善。Objective To explore the feasibility of constructing an objective tinnitus subtype model based on peripheral blood differentially expressed genes(DEGs)using a combination of Weighted Gene Co-expression Network Analysis(WGCNA)and Random Forest algorithm(RF).Methods From October 2019 to June 2020,peripheral blood DEGs were obtained from 37 patients(from the Third Affiliated Hospital of Sun Yat-sen University)with chronic subjective high-frequency tinnitus(21 unbothersome type,16 bothersome type)and 20 healthy volunteers through high-throughput sequencing.WGCNA was used to construct gene modules with different expression patterns and analyze their relationships with tinnitus characteristics.Subsequently,RF was employed to build subtype models,which were evaluated by the area under the receiver operating characteristic curve(AUC),accuracy,and F1-score.Results A total of 12351 intergroup DEGs were divided into 9 gene modules.Among them,MEblue,MEgreen,and MEbrown showed significant negative correlations with the healthy volunteer group,while MEpink showed a significant positive correlation with the tinnitus distress group.The"Tinnitus vs.Normal"and"Compensatory vs.Decompensatory"subtype models,based on MEblue and MEpink respectively,both had AUCs greater than 0.80,accuracies above 90%,and F1-scores above 0.90,indicating good performance.Conclusions Peripheral blood DEGs are potential biological indicators for objective classification of subjective tinnitus.The combined application of WGCNA and the Random Forest algorithm should be a viable approach to constructing an objective tinnitus subtype model.However,further exploration and refinement are needed to validate the model′s generalizability,cross-dataset performance,and algorithm optimization.
关 键 词:耳鸣 主观性 分型模型 基因表达 差异 加权基因共表达网络分析 随机森林算法
分 类 号:R764.45[医药卫生—耳鼻咽喉科]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.254