检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dawei Wu Zhennan Zhou
机构地区:[1]School of Mathematical Sciences,Peking University,Beijing 100871,China [2]Beijing International Center for Mathematical Research,Peking University,Beijing 100871,China
出 处:《Annals of Applied Mathematics》2024年第1期71-104,共34页应用数学年刊(英文版)
基 金:partially supported by the National Key R&D Program of China,Project No.2020YFA0712000;NSFC Grant No.12031013 and 12171013.
摘 要:The stochastic growth-fragmentation model describes the temporal evolution of a structured cell population through a discrete-time and continuous-state Markov chain.The simulations of this stochastic process and its invariant measure are of interest.In this paper,we propose a numerical scheme for both the simulation of the process and the computation of the invariant measure,and show that under appropriate assumptions,the numerical chain converges to the continuous growth-fragmentation chain with an explicit error bound.With a triangle inequality argument,we are also able to quantitatively estimate the distance between the invariant measures of these two Markov chains.
关 键 词:Growth-fragmentation model Markov chain numerical approximation space discretization convergence rate
分 类 号:O211.62[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49