检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘林 林山驰 李相国 冯敏 许亮[3,4] LIU Lin;LIN Shanchi;LI Xiangguo;FENG Min;XU Liang(Guangdong Gloryview Technology Co.Ltd.,Guangzhou 510145,China;Guangdong Engineering Research Center of Cloud-Edge-End Collaboration Technology for Smart City,Guangzhou 510660,China;Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;Agricultural Hyperspectral Application&Information Database Platform of Jilin Province,Changchun 130033,China)
机构地区:[1]广东宏景科技股份有限公司,广东广州510145 [2]智慧城市云边端协同技术广东省工程研究中心,广东广州510660 [3]中国科学院长春光学精密机械与物理研究所,吉林长春130033 [4]吉林省农业高光谱应用信息数据库,吉林长春130033
出 处:《液晶与显示》2024年第8期1138-1144,共7页Chinese Journal of Liquid Crystals and Displays
基 金:广东省重点研发计划(No.2019B020214001)。
摘 要:为了满足作物病虫害绿色防治对病虫害程度检测的需求,设计了一种改进的U-Net网络模型用于作物叶片病虫害程度的检测。首先,选择ResNet50网络作为模型的主干网络,借助迁移学习来提升训练收敛速度和降低计算成本。其次,引入注意力机制对U-Net网络的各层特征提取和融合进行优化,以提高网络模型接收关键信息的能力。实验结果表明,改进的U-Net512网络模型具有最优的检测性能,平均检测精度达到90.14%,平均绝对误差为276.3。通过分析模型不同采样深度下的各层特征图发现,注意力机制的引入使网络模型能够获取并融合叶片整体特征和病害区域特征两个维度的信息,进一步提升模型检测性能。这种方法不仅能够有效地检测作物叶片的病虫害程度,而且具有较高的准确性和可靠性,有助于实现作物病虫害的绿色防治。To meet the demand of green prevention and control of crop diseases and pests for the detection of disease and pest severity,an improved U-Net network model is designed for the detection of crop leaf disease and pest severity.First,the ResNet50 network is selected as the backbone network of the model,and transfer learning is used to improve the training convergence speed and reduce the computational cost.Second,the attention mechanism is introduced to optimize the feature extraction and fusion of each layer of the U-Net network,so as to improve the ability of the network model to receive key information.The experimental results show that the improved U-Net512 network model has the best detection performance,with an average detection accuracy of 90.14%and an average absolute error of 276.3.By analyzing the feature maps of each layer of the model under different sampling depths,it is found that the introduction of attention mechanism enables the network model to obtain and fuse two dimensions of information:the overall feature of the leaf and the disease area feature,which further improves the model detection performance.This method can not only effectively detect the disease and pest severity of crop leaves,but also has high accuracy and reliability,which is conducive to achieving green prevention and control of crop diseases and pests.
关 键 词:病虫害检测 改进U-Net网络 注意力机制 病虫害防治
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80