检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaolin Xie Yuchao Li Lijun Zhao Xin Jin Shengsheng Wang Xiaobing Han
机构地区:[1]College of Agricultural Equipment Engineering,Henan University of Science and Technology,Luoyang 471003,Henan,China [2]Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province,Luoyang 471003,Henan,China [3]Longmen Laboratory,Luoyang 471003,Henan,China [4]College of Intelligent and Manufacturing Engineering,Chongqing University of Arts and Sciences,Chongqing 402160,China
出 处:《International Journal of Agricultural and Biological Engineering》2024年第2期221-229,共9页国际农业与生物工程学报(英文)
基 金:funded by the National Key Research and Development Program of China Project(Grant No.2021YFD2000700);the National Natural Science Funds for Young Scholars of China(Grant No.51905154);the Luoyang Public Welfare Special Project(Grant No.2302031A).
摘 要:To realize the visual navigation of agricultural robots in the complex environment of orchards,this study proposed a method for fruit tree recognition and navigation based on YOLOv5.The YOLOv5s model was selected and trained to identify the trunks of the left and right rows of fruit trees;the quadratic curve was fitted to the bottom center of the fruit tree recognition box,and the identified fruit trees were divided into left and right columns by using the extreme value point of the quadratic curve to obtain the left and right rows of fruit trees;the straight-line equation of the left and right fruit tree rows was further solved,the median line of the two straight lines was taken as the expected navigation path of the robot,and the path tracing navigation experiment was carried out by using the improved LQR control algorithm.The experimental results show that under the guidance of the machine vision system and guided by the improved LQR control algorithm,the lateral error and heading error can converge quickly to the desired navigation path in the four initial states of[0 m,−0.34 rad],[0.10 m,0.34 rad],[0.15 m,0 rad]and[0.20 m,−0.34 rad].When the initial speed was 0.5 m/s,the average lateral error was 0.059 m and the average heading error was 0.2787 rad for the navigation trials in the four different initial states.Its average driving was 5.3 m into the steady state,the average value of steady state lateral error was 0.0102 m,the average value of steady state heading error was 0.0253 rad,and the average relative error of the robot driving along the desired navigation path was 4.6%.The results indicate that the navigation algorithm proposed in this study has good robustness,meets the operational requirements of robot autonomous navigation in orchard environment,and improves the reliability of robot driving in orchard.
关 键 词:fruit tree recognition visual navigation YOLOv5 complex environments ORCHARDS
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.101.130