Detecting LLM-assisted writing in scientific communication:Are we there yet?  

在线阅读下载全文

作  者:Teddy Lazebnik Ariel Rosenfeld 

机构地区:[1]Department of Mathematics,Ariel University,Ariel,Israel [2]Department of Cancer Biology,Cancer Institute,University College London,London,UK [3]Department of Information Science,Bar Ilan University,Ramat Gan,Israel

出  处:《Journal of Data and Information Science》2024年第3期4-13,共10页数据与情报科学学报(英文版)

摘  要:Large Language Models(LLMs),exemplified by ChatGPT,have significantly reshaped text generation,particularly in the realm of writing assistance.While ethical considerations underscore the importance of transparently acknowledging LLM use,especially in scientific communication,genuine acknowledgment remains infrequent.A potential avenue to encourage accurate acknowledging of LLM-assisted writing involves employing automated detectors.Our evaluation of four cutting-edge LLM-generated text detectors reveals their suboptimal performance compared to a simple ad-hoc detector designed to identify abrupt writing style changes around the time of LLM proliferation.We contend that the development of specialized detectors exclusively dedicated to LLM-assisted writing detection is necessary.Such detectors could play a crucial role in fostering more authentic recognition of LLM involvement in scientific communication,addressing the current challenges in acknowledgment practices.

关 键 词:LLM-assisted writing Scientific communication Writing style 

分 类 号:G353.1[文化科学—情报学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象