基于NSGA-II遗传算法的定轴注射模具成型工艺参数优化  

Optimization of molding process parameters of fixed-axis injection mold based on NSGA-II genetic algorithm

在线阅读下载全文

作  者:陈超[1] 高全杰 CHEN Chao;GAO Quanjie(School of Mechanical Automation,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China)

机构地区:[1]武汉科技大学机械自动化学院,湖北武汉430081

出  处:《农业装备与车辆工程》2024年第8期153-157,共5页Agricultural Equipment & Vehicle Engineering

摘  要:为解决注射成型过程中铸件的质量和铸造效率低等问题,提出一种NSGA-II算法和TOPSIS方法与响应面法相结合的新型注射工艺参数优化筛选方法。以定轴为研究对象,采用Box-Behnken设计,以熔体温度、模具温度、注射时间、保压压力为变量,以翘曲变形量和体积收缩率为响应变量,采用NSGA-II遗传算法对2个响应的目标函数执行优化,用TOPSIS方法求解优化得到的Pareto前沿解集,找到最优解。仿真结果表明,当注射时间为40.71s、模具温度为131℃、熔体温度为180.07℃、保压压力为65 MPa时,翘曲变形降低了10.92%、体积收缩率降低了11.19%。优化后的注射工艺参数可有效消除铸件内部收缩松动和缩孔缺陷,形成性能良好的致密铸件,提高了产品质量。In order to solve the problems of casting quality and casting inefficiency in the injection molding process,a novel injection process parameter optimization and screening method was proposed combining NSGA-II algorithm and TOPSIS method with the response surface method.With a fixed shaft as the object of study,Box-Behnken design was adopted,with melt temperature,mold temperature,injection time,holding pressure as variables,and product quality with warpage deformation amount and volume shrinkage as response variables.The NSGA-II genetic algorithm was used to perform optimization of the objective functions of the two responses,and then the optimal solution was found by solving the optimized Pareto front solution set using the TOPSIS method.The final simulation verification showed that when the injection time was 40.71 s,the mold temperature was 131℃,the melt temperature was 180.07℃,and the holding pressure was 65 MPa,the warpage deformation was reduced by 10.92%,while the volumetric shrinkage rate was reduced by 11.19%.The optimize and improve injection process parameters could effectively eliminate the defects of shrinkage loosening and shrinkage hole inside the casting,thus forming a dense casting with good performance,which could effectively improve the quality of products.

关 键 词:注射成型 多目标优化 BOX-BEHNKEN设计 NSGA-II遗传算法 

分 类 号:TG245[金属学及工艺—铸造]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象