基于压缩感知的高分辨率图像安全传输方法  

A secure transmission method for high-resolution images based on compressed sensing

在线阅读下载全文

作  者:闫猛 Yan Meng(Unit 45,No.92941 Troops of PLA,Huludao 125001,China)

机构地区:[1]92941部队45分队,葫芦岛125001

出  处:《现代计算机》2024年第12期67-70,87,共5页Modern Computer

摘  要:由于常规的高分辨率图像安全传输方法主要使用STDDS融合传输机制进行图像数据分块处理,易受量积矩阵相较多、张量积衰减的影响,导致图像信号存在约束等距问题,安全传输性能较差。因此,设计一种基于压缩感知的高分辨率图像安全传输方法。当传输图像的量积矩阵相对较多时,该方法进行张量积充足,构建高分辨率图像安全传输P张量积模型。假设离散传输信号中存在基矩阵,对其进行量化处理,生成原始信号压缩采样式;针对实际传输的图像信号存在一定的约束等距问题,利用CS算子进行重构求解,再利用压缩感知进行了图像安全传输补偿,从而实现了高分辨率图像安全传输。实验结果表明:设计的高分辨率图像安全传输方法的峰值信噪比、结构相似性指数均较高,未出现图像失真问题,因此可以得出,本文设计的高分辨率图像压缩感知安全传输方法的传输效果较好。Because the conventional high resolution image security transmission method mainly uses STDDS fusion transmission mechanism for image data block processing,it is susceptible to the influence of quantity product matrix and tensor product attenuation,resulting in the constraint problem of image signal,and the security transmission performance is poor.Therefore,a highresolution image secure transmission method based on compressed sensing is designed.When there are relatively many quantitative product matrix of transmitted images,this method performs sufficient tensor product to construct a secure transmission P tensor product model of high-resolution images.Assuming the base matrix in the discrete transmission signal,to generate the original signal compression pattern,use CS operator to reconstruct and solve the compressed sensing to realize the high resolution image transmission.The experimental results show that the peak signal to noise ratio and structural similarity index of the designed high-resolution image secure transmission method are high,without the image distortion problem,so the designed high-resolution image compression sensing secure transmission method is good.

关 键 词:压缩感知 高分辨率 分块处理 安全传输 

分 类 号:TN919.8[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象