基于格基约减的水下成像光MIMO预编码研究  

PRECODING FOR UNDERWATER OPTICAL LIGHT MIMO SYSTEM BASED ON LATTICE REDUCTION

在线阅读下载全文

作  者:张依涛 陈晓[2,3] 李燕龙 符杰林[1,2] Zhang Yitao;Chen Xiao;Li Yanlong;Fu Jielin(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,Guangxi,China;Ministry of Education Key Laboratory of Cognitive Radio and Information Processing,Guilin University of Electronic Technology,Guilin 541004,Guangxi,China;School of Art and Design,Guilin University of Electronic Technology,Guilin 541004,Guangxi,China)

机构地区:[1]桂林电子科技大学信息与通信学院,广西桂林541004 [2]桂林电子科技大学认知无线电与信息处理教育部重点实验室,广西桂林541004 [3]桂林电子科技大学艺术与设计学院,广西桂林541004

出  处:《计算机应用与软件》2024年第8期121-125,共5页Computer Applications and Software

基  金:国家自然科学基金项目(61761014);广西自然科学基金项目(2018GXNSFBA281131);认知无线电与信息处理教育部重点实验室主任基金项目(CRKL190109)。

摘  要:针对水下成像光MIMO系统子信道间相关性强的问题,提出一种基于格基约减最小均方误差预编码算法。通过将接收端的最小均方误差检测操作转化为发送端的预编码,解决了传统光MIMO线性检测算法对噪声的放大问题,并利用格基约减后正交性更好的信道矩阵求解预编码阵,降低了光MIMO系统子信道间的相关性。仿真结果表明,在误码率为10^(-4)数量级时,与传统光MIMO检测算法相比,采用格基约减预编码算法的系统获得了5 dB的信噪比增益。Aimed at the problem that the great spatial correlation between sub-channels of the underwater visible light MIMO system,a precoding algorithm based on lattice reduction is proposed.By transforming the MMSE detection operation at the receiving end into the precoding at the transmitter,the problem of noise amplifying of the traditional optical MIMO linear detection algorithm was solved,and the channel matrix with better orthogonality after the lattice reduction was used to obtain the precoding matrix,which reduced correlation between sub-channels of optical MIMO system.The simulation results show that,at the BER of 10^(-4),compared with the traditional optical MIMO detection algorithm,the system using the lattice reduction precoding algorithm obtains an SNR gain of 5 dB.

关 键 词:水下光通信 成像多输入多输出系统 格基约减 预编码 

分 类 号:TN929.1[电子电信—通信与信息系统] TP3[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象