深度学习技术对颅内外动脉阻塞性狭窄的诊断价值  

Diagnostic Value of Deep Learning-Based Technology for Obstructive Stenosis of Extracranial and Intracranial Artery

在线阅读下载全文

作  者:郝光宇[1,2] 陈蒙[1,2] 刘原庆[1,2] 秦义人 王希明 胡粟 胡春洪[1,2] HAO Guang-yu;CHEN Meng;LIU Yuan-qing;QIN Yi-ren;WANG Xi-ming;HU Su;HU Chun-hong(Department of Radiology,the First Affiliated Hospital of Soochow University,Suzhou 215006,Jiangsu Province,China;Institute of Medical Imaging,Soochow University,Suzhou 215006,Jiangsu Province,China;Department of Neurology,the First Affiliated Hospital of Soochow University,Suzhou 215006,Jiangsu Province,China)

机构地区:[1]苏州大学附属第一医院放射科 [2]苏州大学医学影像研究所 [3]苏州大学附属第一医院神经内科,江苏苏州215006

出  处:《中国CT和MRI杂志》2024年第8期155-158,共4页Chinese Journal of CT and MRI

摘  要:目的探究基于深度学习(DL)技术对颅内外动脉阻塞性狭窄的诊断价值。方法回顾性分析我院2020年1月至2021年6月疑似急性缺血性脑卒中患者,且在一月内接受CTA和DSA。按患者和血管水平将狭窄程度分为正常、轻度狭窄、中度狭窄、重度狭窄和闭塞,阻塞性狭窄定义为直径狭窄率≥70%。以DSA为参考标准,通过受试者工作曲线(ROC)、敏感性、特异性评价诊断性能。结果在患者水平,DL技术与放射科医师的AUC分别为0.781(敏感性和特异性分别为0.934、0.627)和0.840,差异无统计学意义(P=0.074)。在血管水平,DL技术与放射科医师的AUC分别为0.923(敏感性和特异性分别为0.885、0.962)和0.932,差异无统计学意义(P=0.393)。DL技术分析的中位分析时间(8.67 min)明显短于放射科医师(29.55 min)(P<0.001)。结论DL技术可以准确评估颅外和颅内动脉狭窄,耗时短,有望成为优化风险分层和指导治疗策略的方法。Objective To explore the diagnostic value of deep learning(DL)technology for obstructive stenosis of extracranial and intracranial artery.Methods The study retrospectively included patients suspected with acute ischemic stroke from January 2020 to June 2021,who underwent both CTA and DSA within one month.Degrees of stenosis were classified as normal(0%),mild stenosis(<50%),moderate stenosis(50-69%),severe stenosis(70-99%)and occlusion(100%)on patient-based and vessel-based analysis.Obstructive stenosis was defined as diameter stenosis≥70%.Diagnostic performance was assessed through AUC,sensitivity and specificity with DSA as reference standard.Results In patientbased analysis,the AUCs of DL technology and radiologists in detecting obstructive stenosis were 0.781[sensitivity and specificity were 0.934 and 0.627]and 0.840 respectively,and there had no statistical significance(P=0.074).In vessel-based analysis,the AUCs of DL technology and radiologists were 0.923[sensitivity and specificity were 0.885 and 0.962]and 0.932 respectively,and there had no statistical significance(P=0.393).The median analysis time of DL technology was 8.67 minutes,which was significantly lower than 29.55 minutes of radiologists(P<0.001).Conclusion DL technology,with less time-consuming,can accurately assess extracranial and intracranial artery stenosis and will be a promising method to optimize risk stratification and guide treatment strategies.

关 键 词:深度学习 CTA 狭窄 颅内外动脉 

分 类 号:R543.5[医药卫生—心血管疾病]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象