人工智能对通信电源监控数据采集方法的影响研究  

Research on the Impact of Artificial Intelligence on Data Collection Methods for Communication Power Supply Monitoring

在线阅读下载全文

作  者:刘西安 李孟恩 LIU Xi′an;LI Meng′en(Xuzhou Sanxin Power Supply Service Co.,Ltd.,Pizhou Branch,Xuzhou 221300,China)

机构地区:[1]徐州三新供电服务有限公司邳州分公司,江苏徐州221300

出  处:《电工技术》2024年第S01期55-57,共3页Electric Engineering

摘  要:在如今的信息化、智能化的社会背景下,通信领域的发展也随着技术的进步而不断创新。将人工智能技术应用于通信电源监控数据采集领域,能够显著提升通信电源监控数据采集的效率与准确性。基于此,从传统通信电源监控数据采集方法的如低采样率和数据误差等局限性入手,探讨并详细阐述了一种基于人工智能的通信电源监控数据采集方法,强调了智能感知数据采集模块的设计、数字滤波算法和标度变换算法的应用。通过验证表明该方法相较于传统方法在采样率和准确度上得到了大幅提高。人工智能技术的应用为克服传统方法局限性、保障通信网络的稳定运行提供了坚实的技术支持,在通信电源监控数据采集领域中具有一定的潜力和应用价值。In the current context of informatization and intelligence,the development of the communication field is constantly innovating with the progress of technology.Applying artificial intelligence technology to the field of communication power monitoring data collection can significantly improve the efficiency and accuracy of communication power monitoring data collection.The article starts with the limitations of traditional communication power monitoring data collection methods,such as low sampling rate and data error.Exploring and elaborating a communication power monitoring data acquisition method based on artificial intelligence,emphasizing the design of intelligent perception data acquisition module,application of digital filtering algorithm and scale transformation algorithm.Verification has shown that this method has significantly improved sampling rate and accuracy compared to traditional methods.The application of artificial intelligence technology provides solid technical support for overcoming the limitations of traditional methods and ensuring the stable operation of communication networks.It has certain potential and application value in the field of communication power monitoring data acquisition.

关 键 词:人工智能 通信电源监控 数据采集 通信技术 数字滤波算法 标度变换算法 

分 类 号:TM77[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象