检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《信息记录材料》2024年第8期144-146,共3页Information Recording Materials
基 金:西北大学2023年实验室安全运行项目(XM09232297)。
摘 要:时序特征提取是视频生成领域具有挑战性的任务之一。本文提出一种改进的自监督时空特征学习的视频生成对抗网络(self-supervised spatio-temporal feature learning video generative adversarial networks,SSFLVGAN)算法来提升模型的性能,对于判别器网络的3D CNN模块,在其前四层卷积网络后增加了3D平均池化层AvgPool3d,以减少模型参数,从而实现合成视频和真实视频有效判别,以及帧之间运动时序关系是否正确的有效识别。与基准算法比较,SSFLVGAN算法在结构相似性指数和峰值信噪比评价指标上的效果更好,生成的视频更加逼真、更加合理。
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90