基于邻域优势粗糙集的区分度动态属性约简算法  

Dynamic attribute reduction algorithm based on neighborhood dominance rough set

在线阅读下载全文

作  者:张海玉[1,2] 贾润亮[1,2] ZHANG Hai-yu;JIA Run-liang(School of Finance and Economics,Taiyuan University of Technology,Taiyuan 030024,China;Information Institute,Shanxi Finance&Taxation College,Taiyuan 030024,China)

机构地区:[1]太原理工大学财经学院,山西太原030024 [2]山西省财政税务专科学校信息学院,山西太原030024

出  处:《计算机工程与设计》2024年第8期2320-2328,共9页Computer Engineering and Design

基  金:国家自然科学基金项目(61403271)。

摘  要:为解决动态环境下数值型偏序关系数据的属性约简问题,利用优势粗糙集的区分度提出一种增量式属性约简算法。在数值型信息系统环境下,定义邻域优势区分度度量,通过邻域优势区分度设出一种非增量式属性约简算法;研究和分析对象变化场景下邻域优势区分度进行增量式更新的原理;分别提出数据对象增加和减少情形下数据集属性约简的增量式更新算法。在多个UCI数据集上进行实验验证,实验结果表明,该增量式算法能够有效完成动态数据的属性约简任务。To solve the problem of attribute reduction for numerical ordered data in dynamic environments,an incremental attri-bute reduction algorithm was proposed using the discrimination measurement of dominance rough set.In a numerical information system environment,a neighborhood dominance discrimination measurement was defined,and a non-incremental attribute reduction algorithm was designed based on the neighborhood dominance discrimination measurement.The principle of incremental updating of neighborhood dominance discrimination measurement in object changing scenarios was studied and analyzed.When adding or deleting batch objects in a numerical information system,an incremental updating algorithm for attribute reduction was proposed respectively.Experimental results on several UCI datasets show that the incremental algorithm can effectively accomplish the task of attribute reduction of dynamic data.

关 键 词:数值型 偏序关系数据 属性约简 优势粗糙集 邻域关系 区分度 增量式学习 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象