检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Abdulkerim Karabiber Ömer Dirik Feyyaz Koc Faruk Ozel
机构地区:[1]Department of Electrical and Electronics Engineering,Bingol University,Bingol 12000,Turkey [2]Department of Metallurgical and Materials Engineering,Karamanoglu Mehmetbey University,Karaman 70200,Turkey
出 处:《Nano Research》2024年第9期8455-8464,共10页纳米研究(英文版)
基 金:supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under project number 121M608.
摘 要:Triboelectric nanogenerators(TENGs)have emerged as a promising technology to harvest electrical energy from natural motions such as human movement,wind,and water flow.Although TENGs show significant potential in small-scale applications,developing large-scale TENGs capable of generating high power remains a significant challenge.Several factors that can affect the performance of large-scale TENGs are being investigated to overcome this challenge,including the size and configuration of dielectric materials.This study optimizes dielectrics regarding surface area,thickness,and multicell configuration to improve harvested electrical power density in large-scale TENGs.In the studies,glass fiber was used as the positive dielectric,and multipurpose white silicone was used as the negative dielectric because of their high tribo-potential,durability,and easy accessibility.In the size optimization phase,dielectric thicknesses and surface areas that provide the maximum power density were determined.Subsequently,horizontal and vertical multicell configurations were examined to efficiently integrate size-optimized dielectrics.The results reveal that large-scale TENGs with vertical multicell configurations can achieve high and usable energy density for electronics.The findings provide valuable insight into the development of large-scale TENGs with advanced power generation capabilities.
关 键 词:triboelectric nanogenerator dielectric layer size optimization multi-cell structure high power density
分 类 号:TM31[电气工程—电机] TB383[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.64