一种基于强化学习的三国杀多智能体博弈方法  

A 2v2 Three-Country Killing Multi-Agent Game Method Based on Reinforcement Learning

在线阅读下载全文

作  者:骆芙蓉 王以松[1,2] 秦进[1,2] 于小民 LUO Fu-rong;WANG Yi-song;QIN Jin;YU Xiao-min(College of Computer Science and Technology,Guizhou University,Guiyang Guizhou 550025,China;Institute of Artificial Intelligence of Guizhou University,Guiyang Guizhou 550025,China)

机构地区:[1]贵州大学计算机科学与技术学院,贵州贵阳550025 [2]贵州大学人工智能研究院,贵州贵阳550025

出  处:《计算机仿真》2024年第7期484-490,共7页Computer Simulation

基  金:国家自科学基金项目(U1836205)。

摘  要:深度强化学习在处理序列决策与策略探索问题上取得了很大的成功,大多从游戏中展开研究获得启发,其应用领域从单智能体场景扩展到多智能体场景中。基于纸牌的多人对战策略游戏是一种多智能体系统,但现有研究较少,且大多都来自于斗地主、德州扑克。为拓展基于纸牌的多智能体策略游戏的研究,提出了一种基于强化学习的三国杀多智能体博弈方法(SGS-MAPG),自建了以三国杀游戏为背景的2v2对战游戏场景作为实验环境,基于策略梯度的思想对合作的多个智能体建模,在其决策过程中包含了多智能体系统的团队合作与对抗,解决了多个智能体环境下的不稳定性问题。经计算机模拟对战过程,上述方法使智能体经过训练具有良好的学习决策能力,并且能够尝试获得多于基础算法的最终团队奖励,并得到高出至少12%胜率。Deep reinforcement learning has ac hieved great success in dealing with sequential decision-making and strategy exploration,and most of them are inspired by in-game research,and its appli cation field has expanded from single-agent scenarios to multi-agent scenarios.Solitaire-based multiplayer strat egy games are a multi-agent system,but there are few existing studies,and most of them come from Doudi Landlord and Te xas Hold'em.In order to expand the research of multi-agent strategy games based on cards,this paper proposes a 2v2 three-country killing multi-agent game method(SGS-MAPG)based on reinforcement learning,which builds a 2v2 bat tle game scene with the background of three-kingdom killing game as the experimental environment,models coop erative multiple agents based on the idea of strategy gradient,and in cludes teamwork and confrontation of multi-a gent systems in its decision-making process,which solves the problem of instability in multiple agent environments.Through computer simulation of the battle process,this method enables the agent to be trained to have good learning and decision-making ability,and can try to obtain more final team rewards than the basic algorithm,and get at least 12%higher win rate.

关 键 词:深度强化学习 多智能体 三国杀游戏环境 合作对抗 

分 类 号:TP317[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象