检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘威 罗建军[1,2] LIU Wei;LUO Jianjun(School of Astronautics,Northwestern Polytechnical University,Xi'an 710072,China;National Key Laboratory of Aerospace Flight Dynamics,Xi'an 710072,China)
机构地区:[1]西北工业大学航天学院,西安710072 [2]航天飞行动力技术重点实验室,西安710072
出 处:《宇航学报》2024年第7期1078-1088,共11页Journal of Astronautics
摘 要:针对平动点附近的具有强非线性和耦合性的轨道-姿态动力学机理分析,以及如何利用其动力学特性完成相关任务操作等问题,提出了基于Floquet理论的轨道-姿态运动模态构建方法,并探讨了所构建模态的典型应用。首先,在平动点轨道-姿态周期解的基础上,对轨道-姿态状态转移矩阵进行分块,根据分块矩阵特征值特点,建立了姿态模态和姿轨耦合模态,与轨道模态共同构成完整的轨道-姿态运动模态。然后,对模态特性进行了相空间分析。最后,以平动点相对轨道-姿态运动解析、平动点轨道-姿态稳定性控制和平动点轨道附近姿轨编队设计为应用案例,相应数值仿真表明了所提出模态的正确性,以及在典型航天任务设计与控制中的应用价值。Aiming at the research on the dynamics mechanism of strong nonlinear coupled orbit-attitude near the libration point and how to use dynamics characteristics to complete the relevant task operation,a method of constructing orbit-attitude motion modes based on Floquet theory is proposed,and the typical application examples of the modes are given.Firstly,the orbit-attitude state transition matrix is segmented on the basis of the periodic solution of the libration point.According to the eigenvalue characteristics of the segmented matrix,the orbit modes,the attitude modes and the orbit-attitude coupling modes constitute a complete orbit-attitude motion modes.Then,the modal characteristics are analyzed by phase space.Finally,the relative orbit-attitude motion analysis of the libration point,the orbit-attitude stability control of the libration point and the formation design of the orbit near the libration point are used as application scenarios.The numerical simulation results show the correctness of the proposed modes and their application value in the design and control of typical space missions.
关 键 词:圆型限制性三体问题 轨道-姿态运动 平动点 FLOQUET理论
分 类 号:V412.4[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.146.37.183