Predicting grain size-dependent superplastic properties in friction stir processed ZK30 magnesium alloy with machine learning methods  

在线阅读下载全文

作  者:Farid Bahari-Sambran Fernando Carreno C.M.Cepeda-Jiménez Alberto Orozco-Caballero 

机构地区:[1]Physical Metallurgy Department,CENIM-CSIC,Av.Gregorio del Amo 8,28040 Madrid,Spain [2]Department of Mechanical Engineering,Chemistry and Industrial Design,Polytechnic University of Madrid,Ronda de Valencia 3,28012,Madrid,Spain

出  处:《Journal of Magnesium and Alloys》2024年第5期1931-1943,共13页镁合金学报(英文)

基  金:obtained from Comunidad de Madrid through the Universidad Politécnica de Madrid in the line of Action for Encouraging Research from Young Doctors(project CdM ref:APOYO-JOVENES779NQU-57-LSWH0F,UPM ref M190020074AOC,CAREDEL);MINECO(Spain)Project MAT2015-68919-C3-1-R(MINECO/FEDER);project PID2020-118626RB-I00(RAPIDAL)awarded by MCIN/AEI/10.13039/501100011033;FSP assistance;Project CAREDEL;Project RAPIDAL for research contracts;MCIN/AEI for a FPI contract number PRE2021-096977。

摘  要:The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and artificial neural network(ANN).With that purpose,a ZK30 magnesium alloy was friction stir processed(FSP)using three different severe conditions to obtain fine grain microstructures(with average grain sizes between 2 and 3μm)prone to extensive superplastic response.The three friction stir processed samples clearly deformed by grain boundary sliding(GBS)deformation mechanism at high temperatures.The maximum elongations to failure,well over 400% at high strain rate of 10^(-2)s^(-1),were reached at 400℃ in the material with coarsest grain size of 2.8μm,and at 300℃ for the finest grain size of 2μm.Nevertheless,the superplastic response decreased at 350℃ and 400℃ due to thermal instabilities and grain coarsening,which makes it difficult to assess the operative deformation mechanism at such temperatures.This work highlights that the machine learning models considered,especially the ANN model with higher accuracy in predicting flow stress values,allow determining adequately the superplastic creep behavior including other possible grain size scenarios.

关 键 词:Machine learning Artificial intelligence Magnesium alloys SUPERPLASTICITY Friction stir processing Grain coarsening 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TG146.22[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象