机构地区:[1]山东大学齐鲁医院德州医院急诊重症医学科,山东德州253000 [2]山东大学齐鲁医院德州医院创伤运动医学科,山东德州253000
出 处:《中国急救医学》2024年第9期745-751,共7页Chinese Journal of Critical Care Medicine
基 金:山东省医药卫生科技发展计划项目(202204070241)。
摘 要:目的构建多发性骨折创伤失血性休克患者疾病转归的预测模型,并进行内外部验证。方法选取2023年1月至2024年1月于山东大学齐鲁医院德州医院就诊的126例多发性骨折创伤失血性休克患者作为建模集用于模型构建,另外100例多发性骨折创伤失血性休克患者作为验证集用于模型验证。根据建模集患者院内疾病转归情况分为存活组(n=95)、死亡组(n=31),比较两组临床资料,采用单因素和多因素Logistic回归分析确定影响多发性骨折创伤失血性休克患者疾病转归的危险因素,根据筛选的危险因素构建预测模型,经受试者工作特征(ROC)曲线、校准曲线来评估模型预测效能,临床决策曲线分析(DCA)预测模型的临床实用性和获益率。结果死亡组年龄≥60岁(83.87%vs.30.53%)、合并基础疾病(29.03%vs.10.53%)、合并颅内出血(38.71%vs.15.79%)、受伤至急诊时间>4 h(64.52%vs.33.68%)、损伤严重程度(ISS)评分(分:33.54±4.52 vs.29.89±3.42)、6 h乳酸值(mmol/L:5.21±0.22 vs.3.32±0.87)、活化部分凝血活酶时间(APTT,s:39.90±3.45 vs.36.42±2.94)、凝血酶时间(TT,s:17.21±2.87 vs.15.45±1.76)、凝血酶原时间(PT,s:16.98±2.19 vs.14.23±1.98)高于存活组,格拉斯哥昏迷(GCS)评分(分:4.53±0.98 vs.10.23±2.42)、纤维蛋白原(Fib,g/L:2.34±0.32 vs.3.87±0.33)低于存活组,差异均有统计学意义(P<0.05)。多因素Logistic回归分析显示,受伤至急诊时间(OR=3.898,95%CI 1.287~8.275)、GCS评分(OR=3.978,95%CI 1.814~7.989)、ISS评分(OR=2.342,95%CI 1.191~4.375)、6 h乳酸值(OR=2.881,95%CI 1.239~5.689)、Fib(OR=2.543,95%CI 1.198~5.389)是多发性骨折创伤失血性休克患者死亡的独立危险因素(P<0.05)。基于受伤至急诊时间(X_(1))、GCS评分(X_(2))、ISS评分(X_(3))、6 h乳酸值(X_(4))、Fib(X_(5))构建多发性骨折创伤失血性休克患者死亡风险的列线图预测模型。建模集中预测模型的AUC为0.897(95%CI 0.723~0.923),验证集中预测模型的AUC为0Objective To construct a predictive model for disease outcomes in the patients with traumatic hemorrhagic shock caused by multiple fractures,and to conduct internal and external validation.Methods A total of 126 patients with traumatic hemorrhagic shock caused by multiple fractures who visited Dezhou Hospital,Qilu Hospital of Shandong University from January 2023 to January 2024 were selected as the modeling set for model construction,and 100 patients with traumatic hemorrhagic shock caused by multiple fractures were selected as the validation set for model validation.The patients in the modeling set were divided into survival group(n=95)and death group(n=31)based on their in-hospital disease outcomes.Clinical data from the two groups were compared,and univariate and multivariate Logistic regression analysis were used to determine the risk factors affecting disease outcomes in the patients with traumatic hemorrhagic shock caused by multiple fractures.A prediction model was established based on the selected risk factors,the diagnostic effectiveness of the prediction model was evaluated by using the receiver operating characteristic(ROC)curve and calibration curve,and a clinical decision curve analysis(DCA)was used to analyze the benefit rate of the prediction model.Results The age≥60 years old(83.87%vs.30.53%),comorbid underlying diseases(29.03%vs.10.53%),combined intracranial hemorrhage(38.71%vs.15.79%),time from injury to emergency>4 h(64.52%vs.33.68%),injury severity score(ISS,points:33.54±4.52 vs.29.89±3.42),6 h lactate value(mmol/L:5.21±0.22 vs.3.32±0.87),activated partial thromboplastin time(APTT,s:39.90±3.45 vs.36.42±2.94),thrombin time(TT,s:17.21±2.87 vs.15.45±1.76),prothrombin time(PT,s:16.98±2.19 vs.14.23±1.98)were higher in death group than in the survival group,and Glasgow coma scale(GCS,points:4.53±0.98 vs.10.23±2.42),fibrinogen(Fib,g/L:2.34±0.32 vs.3.87±0.33)were lower in death group than those in the survival group(P<0.05).Multivariate Logistic regression analysis showed that the tim
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...