检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Indranil BISWAS S.Senthamarai KANNAN Pinakinath SAHA
机构地区:[1]School of Mathematics,Tata Institute of Fundamental Research,1 Homi Bhabha Road,Mumbai 400005,India [2]Chennai Mathematical Institute,Plot H1,SIPCOT IT Park,Siruseri,Kelambakkam,603103,India
出 处:《Acta Mathematica Sinica,English Series》2024年第8期1920-1940,共21页数学学报(英文版)
基 金:partially supported by a J.C.Bose Fellowship(Grant No.JBR/2023/000003);The second author would like to thank the Infosys Foundation for the partial financial support。
摘 要:Let G be a semi-simple simply connected algebraic group over the field C of complex numbers.Let T be a maximal torus of G,and let W be the Weyl group of G with respect to T.Let Z(w,i)be the Bott–Samelson–Demazure–Hansen variety corresponding to a tuple i associated to a reduced expression of an element w∈W.We prove that for the tuple i associated to any reduced expression of a minuscule Weyl group element w,the anti-canonical line bundle on Z(w,i)is globally generated.As consequence,we prove that Z(w,i)is weak Fano.Assume that G is a simple algebraic group whose type is different from A2.Let S={α1,...,αn}be the set of simple roots.Let w be such that support of w is equal to S.We prove that Z(w,i)is Fano for the tuple i associated to any reduced expression of w if and only if w is a Coxeter element and w^(−1)(Σ_(t=1)^(n)α_(t))∈−S.
关 键 词:Bott-Samelson-Demazure-Hansen variety Coxeter element anti-canonical line bundle Fano weak Fano
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49