地下停车场环境融合语义特征的视觉惯性定位方法  

A Visual Inertial Localization Method Integrating Semantic Features in Underground Parking Environment

在线阅读下载全文

作  者:秦兆博 李琦[1] 邢喆 高铭 谢国涛 王晓伟 QIN Zhaobo;LI Qi;XING Zhe;GAO Ming;XIE Guotao;WANG Xiaowei(College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082,China;Wuxi Intelligent Control of Research Institute,Hunan University,Wuxi 214115,China)

机构地区:[1]湖南大学机械与运载工程学院,湖南长沙410082 [2]湖南大学无锡智能控制研究院,江苏无锡214115

出  处:《湖南大学学报(自然科学版)》2024年第8期185-197,共13页Journal of Hunan University:Natural Sciences

基  金:国家重点研发计划项目(2021YFB2501803);湖南省青年科技创新人才资助项目(2022RC1033)。

摘  要:针对地下停车场环境GPS信号差、光线暗、特征少、纹理弱等带来的定位问题,提出了一种融合语义信息的视觉惯性定位算法.该算法首先通过视觉里程计和IMU预积分进行视觉惯性信息的融合.同时,利用4个鱼眼摄像头输入图像构建全景环视图像,并采用语义分割算法提取停车场环境语义信息.然后,根据视觉惯性紧耦合位姿完成逆投影变换,获得语义特征投影地图并采用回环检测和位姿图优化方式减小累积误差,完成全局位姿图优化,实现较高精度的定位效果.最后,通过Gazebo仿真与实车测试对该算法进行了验证.结果表明,本文算法能充分利用环境语义信息构建较为完整的语义地图,且基于重复定位误差对比,相较于ORB-SLAM3提高了车辆定位精度.A visual inertial localization algorithm integrating semantic information is proposed to address the positioning problems caused by poor GPS signals,dim lighting,limited features,and weak textures in underground parking lots.Firstly,this algorithm fuses visual inertial information through visual odometry and IMU preintegration.Simultaneously,a panoramic surround view image is constructed using four fisheye cameras,and semantic segmentation algorithms are employed to extract semantic information from the parking environment.Then,the semantic feature projection map is obtained through inverse projection transformation based on the tightly coupled visual inertial pose.Additionally,loop detection and pose graph optimization are employed to reduce accumulated errors and achieve global pose graph optimization,thereby achieving higher localization accuracy.This paper verifies the proposed algorithm through Gazebo simulation and real vehicle testing.The results indicate that this algorithm can fully utilize the semantic information of the environment to construct a complete semantic map and achieve higher vehicle localization accuracy than ORB-SLAM3 based on repeated localization error comparisons.

关 键 词:自主代客泊车 视觉惯性定位 多鱼眼全景环视 语义地图 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象