检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋育苗 于金霞[1] SONG Yumiao;YU Jinxia(School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000,P.R.China)
机构地区:[1]河南理工大学计算机科学与技术学院,河南焦作454000
出 处:《重庆邮电大学学报(自然科学版)》2024年第4期747-755,共9页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:河南省高校科技创新团队支持计划(20IRTSTHN013)。
摘 要:移动APP流行度预测对应用推荐、广告投放等意义重大。但是现有方法大多依赖手工特征工程,工作量大且效率较低。为此,提出一种基于深度神经网络的移动APP流行度预测模型。利用最大信息系数进行特征相关性分析以确保特征选取有效性,结合历史流行度特征,通过门控循环单元(gate recurrent unit,GRU)和注意力机制构建长期演化模型来推演发展趋势,基于多尺度卷积神经网络(convolutional neural networks,CNN)和注意力机制构建短期波动模型以实现预测动态优化,结合其他重要特征利用GRU和注意力机制建立多因素影响模型。通过时间注意力模块将上述模型融合,实现流行度预测。实验结果表明,所提模型在移动APP流行度预测方面相对更为精准有效。Mobile app popularity prediction is crucial for app recommendation and advertising.However,existing methods rely heavily on manual feature engineering,which is labor-intensive and inefficient.This paper proposes a deep neural network model for mobile app popularity prediction.First,the maximal information coefficient is utilized to perform feature correlation analysis,ensuring the effectiveness of feature selection.Combined with historical popularity features,a long-term evolution model is constructed through a gate recurrent unit(GRU)and an attention mechanism to deduce the development trend.A short-term fluctuation model is constructed based on multi-scale convolutional neural networks(CNN)and an attention mechanism to achieve dynamic optimization of prediction.Also,other important features are incorporated to build multi-factor influence models using GRU and attention.Finally,the above models are integrated through a temporal attention module to achieve popularity prediction.Experimental results demonstrate the relative accuracy and effectiveness of the proposed model in predicting the popularity of mobile apps.
关 键 词:移动APP 流行度预测 注意力机制 卷积神经网络(CNN) 门控循环单元(GRU)
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.165.89