基于CNN-GRU的移动APP流行度预测模型  

Mobile APP popularity prediction model based on CNN-GRU

在线阅读下载全文

作  者:宋育苗 于金霞[1] SONG Yumiao;YU Jinxia(School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000,P.R.China)

机构地区:[1]河南理工大学计算机科学与技术学院,河南焦作454000

出  处:《重庆邮电大学学报(自然科学版)》2024年第4期747-755,共9页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)

基  金:河南省高校科技创新团队支持计划(20IRTSTHN013)。

摘  要:移动APP流行度预测对应用推荐、广告投放等意义重大。但是现有方法大多依赖手工特征工程,工作量大且效率较低。为此,提出一种基于深度神经网络的移动APP流行度预测模型。利用最大信息系数进行特征相关性分析以确保特征选取有效性,结合历史流行度特征,通过门控循环单元(gate recurrent unit,GRU)和注意力机制构建长期演化模型来推演发展趋势,基于多尺度卷积神经网络(convolutional neural networks,CNN)和注意力机制构建短期波动模型以实现预测动态优化,结合其他重要特征利用GRU和注意力机制建立多因素影响模型。通过时间注意力模块将上述模型融合,实现流行度预测。实验结果表明,所提模型在移动APP流行度预测方面相对更为精准有效。Mobile app popularity prediction is crucial for app recommendation and advertising.However,existing methods rely heavily on manual feature engineering,which is labor-intensive and inefficient.This paper proposes a deep neural network model for mobile app popularity prediction.First,the maximal information coefficient is utilized to perform feature correlation analysis,ensuring the effectiveness of feature selection.Combined with historical popularity features,a long-term evolution model is constructed through a gate recurrent unit(GRU)and an attention mechanism to deduce the development trend.A short-term fluctuation model is constructed based on multi-scale convolutional neural networks(CNN)and an attention mechanism to achieve dynamic optimization of prediction.Also,other important features are incorporated to build multi-factor influence models using GRU and attention.Finally,the above models are integrated through a temporal attention module to achieve popularity prediction.Experimental results demonstrate the relative accuracy and effectiveness of the proposed model in predicting the popularity of mobile apps.

关 键 词:移动APP 流行度预测 注意力机制 卷积神经网络(CNN) 门控循环单元(GRU) 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象