检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张永亮[1] 朱光增 刘沛 ZHANG Yongliang;ZHU Guangzeng;LIU Pei(School of Civil Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;Gansu Provincial Engineering Consulting Center,Lanzhou 730030,China)
机构地区:[1]兰州交通大学土木工程学院,甘肃兰州730070 [2]甘肃省工程咨询中心,甘肃兰州730030
出 处:《桥梁建设》2024年第4期14-20,共7页Bridge Construction
基 金:国家自然科学基金项目(51768037);甘肃省自然科学基金项目(23JRRA848)。
摘 要:为了解高阶振型效应对大跨度钢桁拱桥地震反应的影响机制,以及在采用直接积分法时构建合适的瑞利阻尼矩阵,以某490 m跨径钢桁拱桥为背景,采用SAP 2000软件建立全桥弹性动力计算模型。针对主拱圈上(下)弦杆轴力、弯矩,研究振型参与质量最大的7阶(第1、4、8、11、13、23、49阶)振型反应与总反应的占比关系,并对构建瑞利阻尼矩阵的特征频率选取方法展开研究。结果表明:主拱圈上、下弦杆拱脚区域的轴力主要由1阶振型(第1阶)控制,由拱脚向拱顶过渡,逐渐转变为由2~4阶振型控制,高阶振型效应显著;同一阶振型对主拱圈上、下弦杆轴力贡献率及分布规律的影响不同;对于复杂钢桁拱桥,采用振动方向上振型参与质量较大的2阶振型特征频率构建瑞利阻尼矩阵可能因高估了高阶振型阻尼比,导致除拱脚区域以外的拱圈弦杆杆件轴力计算结果偏小,结构偏于不安全;采用直接积分法对复杂钢桁拱桥进行地震反应分析时,建议选取多阶控制振型构建相应的瑞利阻尼工况,并对其计算结果取包络用于抗震设计。This study focuses on the influential mechanism of higher-mode effects on seismic responses of the long-span steel truss arch bridge and how to construct appropriate Rayleigh damping matrix when using direct integration method.Based on a steel truss arch bridge spanning 490 m,an elastic dynamic calculation model was established in SAP 2000.Given the axle forces and bending moments of the upper and lower chords of the arch,the seven modes(1st,4th,8th,11th,13th,23rd,49th)of the largest mass coefficients are analyzed in terms of the ratio of mode reaction to total reaction,and the methods to select characteristic frequencies for the establishment of Rayleigh damping matrix are discussed.As per the analysis,the axle forces in the arch springing zones of the upper and lower chords are controlled mainly by the 1st-mode vibrations,which is transitioned from arch springing to arch crown and gradually changed to be controlled by the 2nd to 4th modes of vibrations,with remarkable higher-mode effects.Vibrations of a particular mode exert different effects on the contribution ratio of axle forces and axle force distribution of the upper and lower chords of main arch.For the complex steel truss arch bridge,the Rayleigh damping matrix built with the 2nd-mode characteristic frequencies that offer relatively large vibration participation mass coefficients along the vibration direction may overestimate the higher-mode damping ratio,thus resulting in smaller calculated axle forces in the truss members besides the arch springing zones,and making the structure to have narrow safety margin.When the direct integration method is used to analyze the seismic responses of the complex steel truss arch bridge,it is recommended to establish the Rayleigh damping conditions by selecting multiple-mode vibrations,and take the envelope of the calculation results for seismic design.
关 键 词:钢桁拱桥 地震反应 高阶振型 瑞利阻尼 振型叠加法 直接积分法 抗震分析
分 类 号:U448.224[建筑科学—桥梁与隧道工程] U442.55[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.110.162