检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨芳[1] 景丽萍[2] 黄敏[1] 陈雄姿[1] 田帅虎 王抒雁[1] 张宝昕 YANG Fang;JING Liping;HUANG Min;CHEN Xiongzi;TIAN Shuaihu;WANG Shuyan;ZHANG Baoxin(DFH Satellite Co.,Ltd.,Beijing 100094,China;Beijing Key Laboratory of Traffic Data Analysis and Mining,Beijing Jiaotong University,Beijing 100044,China)
机构地区:[1]航天东方红卫星有限公司,北京100094 [2]北京交通大学交通数据分析与挖掘北京市重点实验室,北京100044
出 处:《航天器工程》2024年第4期1-10,共10页Spacecraft Engineering
摘 要:基于遥感卫星任务决策的特点,研究如何采用机器学习方法对执行任务时产生的大量动作、指令和遥测数据进行分析和训练。为了给遥感卫星任务建立机器学习方法,探索机器学习辅助遥感卫星任务智能决策的可行性,并探讨机器学习模型对卫星任务数据的适应性和处理效率。借鉴地面相关人工智能系统成熟的机器学习架构,研究建立遥感卫星任务相关智能决策的机器学习方法,并给出了机器学习的样例。研究结果表明:机器学习方法的适应性很强,初步实现了遥感卫星自主任务决策,并达到一定的准确率,对卫星任务智能决策技术进行了有益探索。Based on the characteristics of remote sensing satellite mission decision-making,the machine learning method is studied to analyze and train a large amount of actions,commands and telemetry data generated during mission execution.In order to establish a machine learning method for remote sensing satellite mission,the feasibility of machine learning assisted intelligent mission decision-making of remote sensing satellite is explored,and the adaptability and processing efficiency of machine learning methods for satellite mission data are also discussed.The mature machine learning framework of ground-related artificial intelligence systems is used for reference to research the establishment of machine learning method for intelligent decision-making of remote sensing satellite mission.An example of machine learning for remote sensing satellite mission is provided in this paper.The research result shows that machine learning methods have strong adaptability and have initially achieved satellite intelligent mission decision-making with certain level of accuracy,which is a beneficial exploration for intelligent decision-making technology of satellite mission.
分 类 号:V474.2[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.73.229