检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐彦凯[1] 王迪[1] 李宜真 曹思远[3] 郝越翔 XU Yankai;WANG Di;LI Yizhen;CAO Siyuan;HAO Yuexiang(College of Artificial Intelligence,China University of Petroleum(Beijing),Beijing 102249,China;Petrochina Chuanqing Drilling Engineering Co.,Ltd.,Shale Gas Exploration and Development Project Management Department,Chengdu,Sichuan 610000,China;CNPC Key Laboratory of Geophysical Exploration,China University of Petroleum(Beijing),Beijing 102249,China)
机构地区:[1]中国石油大学(北京)人工智能学院,北京102249 [2]中国石油集团川庆钻探工程有限公司页岩气勘探开发项目经理部,四川成都610000 [3]中国石油大学(北京)CNPC物探重点实验室,北京102249
出 处:《石油地球物理勘探》2024年第4期736-744,共9页Oil Geophysical Prospecting
基 金:国家自然科学基金项目“含裂隙介质AVF规律研究”(41674128);横向项目“多源多天度数据地震现建模技术研究”(CHX20240279)联合资助。
摘 要:由于地质及环境条件复杂,导致地震勘探采集资料信噪比相对较低,对后续的研究带来不利影响,因此地震勘探数据处理中对随机噪声的压制一直备受关注。现有算法无法较好实现对噪声的有效压制和对有效信号的极大保留,为此,将传统方法和深度学习相结合,提出了基于自适应动态滤波网络(Adaptive Dynamic Filtering Net,ADFNet)的方法压制地震资料中的随机噪声。该网络以编码器—解码器为架构,首先引入通道注意力机制(Attention Mechanism,AM)的思想,通过通道AM对空洞卷积多尺度数据特征集成,为网络提供了精准且丰富的特征表示;然后,引入动态卷积,以较低的计算复杂度实现对地震资料高频特征的学习,从而保留更丰富的细节信息。合成数据和实际数据的实验结果均表明,ADFNet可有效压制地震资料中的随机噪声,同时保留更丰富的地震数据细节,处理后的地震数据信噪比得到显著提升。Due to the complex geological and environmental conditions,the signal‑to‑noise ratio of seismic data is relatively low,which has a negative impact on subsequent research.Therefore,the suppression of random noise in seismic data processing has been of great concern.The existing algorithms are unable to effectively suppress noise and preserve the effective signal.Therefore,this paper combines traditional methods with deep learning and puts forward a method based on an adaptive dynamic filtering network to suppress random noise in seismic data.The network is based on an encoder‑decoder architecture.Firstly,the idea of channel attention mechanism(AM)is introduced to realize the feature integration of multi‑scale data formed by dilated convolution through channel AM,providing accurate and rich feature representation for the network.Then,dynamic convolution is introduced to achieve the learning of high‑frequency features of seismic data with low computational complexity,so as to preserve more detailed information.The experimental results of both synthetic data and actual data show that the adaptive dynamic filtering network can effectively suppress random noise in seismic data while retaining richer details of seismic data,and the signal‑to‑noise ratio of seismic data after processing is significantly improved.
关 键 词:深度学习 通道注意力机制 动态卷积 残差学习 信噪比
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15