利用短序列高密度台站资料推算暴雨重现期方法研究及应用  

Estimating the rainstorm return period based on short-sequence high-density station data:Meteorology andapplication

在线阅读下载全文

作  者:王颖 杨佳希 杨宝钢 翟盘茂[4] 廖代强[1,2] 朱浩楠 邹旭恺[5] 肖风劲 陈鲜艳[5] WANG Ying;YANG Jiaxi;YANG Baogang;ZHAI Panmao;LIAO Daiqiang;ZHU Haonan;ZOU Xukai;XIAO Fengjin;CHEN Xianyan(CMA Key Open Laboratory of Transforming Climate Resources to Economy,Chongqing 401147,China;Chongqing Climate Center,Chongqing 401147,China;Institute of Urban Meteorology,China Meteorological Administration,Beijing 100089,China;Chinese Academy of Meteorological Sciences,Beijing 100081,China;National Climate Centre,Beijing 100081,China)

机构地区:[1]中国气象局气候资源经济转化重点开放实验室,重庆401147 [2]重庆市气候中心,重庆401147 [3]北京城市气象研究院,北京100089 [4]中国气象科学研究院,北京100081 [5]国家气候中心,北京100081

出  处:《气象学报》2024年第4期510-521,共12页Acta Meteorologica Sinica

基  金:科技创新2030-“新一代人工智能”重大项目课题(2022ZD0119502);中国气象局创新发展专项(CXFZ2024J071);中国气象局气候资源经济转化重点开放实验室开放课题(2023009);国家气候中心气候可行性论证创新团队项目(NCCCXTD002);重庆市气象局业务技术攻关项目(YWJSGG-202129、YWJSGG-202205);中央级公益性科研院所基本科研业务费专项基金项目(IUMKY202439)。

摘  要:暴雨重现期是城市排水防涝设计的重要基础,通常基于长年代观测数据进行推算。但在无降水观测或观测时间较短的情况下,如何进行重现期推算和暴雨强度评估是目前亟需解决的科学问题。基于重庆市近14年高密度台站降水观测资料,建立各站逐年日降水极值抽样数据集,以“空间换时间”的思想,对日降水极值样本进行空间抽样,通过与国家级气象站长序列观测数据(>60 a)进行交叉检验,构建试验区目标点最佳百分位合成序列,该方法简称为空间抽样合成法(SBS)。通过重庆地区34个测站长年代观测资料计算重现期降水量“真值”与SBS、邻近点替换、克雷斯曼(Cressman)空间插值、年多个样法等推算结果进行对比检验,就平均而言,SBS的相对误差最小,其中含目标点样本的SBS相对误差最小为7.2%,邻近点替代法相对误差最大(13.2%),表明SBS可以较好地用于中国复杂地形的重庆地区,利用短序列高密度台站降水资料构建无有效降水观测资料目标点处的长序列极值降水样本,从而开展概率拟合优选及暴雨重现期推算。在对上述方法验证基础上,实现重庆地区2062个高密度气象观测站多年(50 a)一遇重现期降水量推算,提高了日尺度极端降水的空间精细化水平,结果能更好反映山区地形对降水的影响。SBS可以充分利用短序列高密度台站降水观测资料,实现区域内任意目标点重现期降水量推算。The rainstorm return period is an important basis for urban drainage and flood control design,which is usually calculatedby long-term observation data.However,under the circumstances of none or short-sequence observations,how to calculate the returnperiod and evaluate rainstorm intensity is an important scientific issue that needs to be solved urgently.Based on high-densityprecipitation observations in Chongqing over the past 14 years,we establish an annual maximum daily rainfall data set.With the ideaof"space trade for time",daily rainfall samples are bootstrapped and used for cross-validation with long-term national station data(more than 60 a)to select optimal percentile synthetic sample set of the target point.This method is referred to as the SpatialBootstrap Synthesis method(hereafter abbreviated as SBS).Comparing the calculated return period rainfall results between theoriginal sequence and other various methods by using 34 stations with long-term observations in Chongqing on average,the relativeerror of the SBS is smaller than that of the other three methods including the nearest station replacement,Cressman interpolation andannual multi-sampling method.Among them,the SBS containing target point samples has the smallest relative error of 7.2%,and the nearest station replacement method has the largest relative error of 13.2%.This indicates that the SBS can be used well in Chongqing,a complex terrain area of China,to construct long-sequence extreme rainfall samples by making use of short-sequence high-densitydata from stations surrounding the target point,while the contrusted sequences can be used to fit the probability distribution functionand calculate the rainfall return period.On this basis,the 50 a return period rainfall of 2062 high-density meteorological observationstations in Chongqing are calculated,which improves the spatial refinement level of daily extreme rainfall and better reflects theinfluence of mountainous terrain.Generally,the SBS can make full use of short-sequence high-density station p

关 键 词:空间抽样合成法 百分位合成序列 年最大日降水 重现期推算 

分 类 号:P49[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象