基于MMED+TQWT方法的叶轮振动信号特征提取研究  

Research on Bearing Fault Feature Extraction and Diagnosis Based on MMED+TQWT Method

在线阅读下载全文

作  者:袁艳 辛保娟 Yuan Yan;Xin Baojuan(School of Mechanical and Electrical Engineering,Xi’an Jiaotong Engineering University,Xi’an Shaanxi 710000,China)

机构地区:[1]西安交通工程学院机械与电气工程学院,陕西西安710000

出  处:《山西电子技术》2024年第4期102-104,共3页Shanxi Electronic Technology

基  金:西安交通工程学院中青年基金项目(2022KY-09)。

摘  要:为了提高高炉煤气余压发电装置(TRT)叶轮故障诊断能力,开发了以最小熵解卷积MMED和可调品质因子小波变换TQWT两种方法共同诊断叶轮故障的技术。先利用MMED方法转换初始振动信号获得更明显的故障冲击成分,再对经过预处理的信号实施TQWT分解,并设定相应的品质因子Q,再按照峭度最大原则确定子带最优分量并计算包络谱数据,实现叶轮故障的诊断功能。研究结果表明:采用本文方法分析故障冲击成分获得了显著增强,对噪声干扰起到了明显抑制作用。从包络谱内明显看到跟叶轮故障特征频率相同的频率特征,形成了明显的边频带,说明叶轮中已形成故障特征。In order to improve the fault diagnosis ability of blast-furnace gas residual pressure power plant(TRT)impeller,two methods of minimum entropy deconvolution MMED and adjustable quality factor wavelet transform TQWT are developed to diagnose impeller fault.First,MMED method is used to convert the initial vibration signal to obtain more obvious fault impact components,and then TQWT decomposition is implemented on the pre-processed signals,and the corresponding quality factor Q is set,and then the optimal subband component is determined according to the kurtosis maximum principle and the envelope spectrum data is calculated to realize the fault diagnosis function of the impeller.The results show that the proposed method can significantly enhance the fault impact components and restrain the noise interference.From the envelope spectrum,it is obvious that the frequency characteristics are the same as the fault characteristic frequency of the impeller,forming a clear side frequency band,indicating that the fault characteristics have been formed in the impeller.

关 键 词:叶轮 最小熵解卷积 可调品质因子小波变换 特征提取 故障诊断 

分 类 号:TH133[机械工程—机械制造及自动化] TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象